Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

1 Supporting Information

2

3 Strong-Weak Binary Solvation Structure for Unimpeded Low-Temperature

4 Ion Transport in Nanoporous Energy Storage Materials

- 5
- 6 Huachao Yang^{a,b}, Zifan Wang^a, Yiheng Qi^a, Qinghu Pan^a, Chuanzhi Zhang^a, Yuhui Huang^{b,c},
- 7 Jianhua Yan^a, Kefa Cen^a, Guoping Xiong^d, Zheng Bo*^a, and Kostya (Ken) Ostrikov^e
- 8
- 9 a. State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang

10 University, Hangzhou, Zhejiang, 310027, China

11 E-mail: <u>bozh@zju.edu.cn</u>

12

^{b.} Research Institute of Zhejiang University-Taizhou, Taizhou, Zhejiang, 318000, China

^{c.} College of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang,
310027, China

17

¹⁸ ^{d.} Department of Mechanical Engineering, The University of Texas at Dallas, Richardson,
¹⁹ Texas, TX 75080, United States

20

^{e.} School of Chemistry and Physics and QUT Centre for Materials Science, Queensland
^{university} of Technology (QUT), Brisbane, QLD 4000, Australia

Figure S1. (a) Impedance ratio of R_s , R_{ct} , R_w in AN-based electrolyte under different temperatures. (b) Nyquist plots of AN-based electrolyte coin cell supercapacitors at different temperatures.

Figure S2. (a–b) Raman spectroscopy of single solvent (MPK, MEK, AN solvent), solvent mixtures (AN/MPK, AN/MEK), and electrolytes (TEMA-BF₄ in AN/MPK, AN/MEK). (c–d) Snapshots of molecular dynamics simulations. (Atom Colors: B, pink; C, grey; F, light blue; H, white; N, dark blue; O, red.)

Figure S3. (a) Freezing tests of different electrolytes at -40 °C. (b-g) Arrhenius plots

of	ionic	conductivities	of	electrolytes.
----	-------	----------------	----	---------------

Figure S4. (a–d) Nyquist plots of different electrolytes based coin cell supercapacitors at different temperatures.

Figure S5. The corresponding equivalent circuit diagram of TEMA-BF₄ in AN/Xbased coin cell supercapacitor. Here, X stands for DIOX, MPK, MEK, ACT and PC.

Figure S6. Activation energies of impedance in different co-solvent-based electrolytes. The activation energies of (a) R_s , (b) R_{ct} , (c) R_w and (d) R in DIOX/MPK/MEK/ACT/PC co-solvent-based electrolytes.

Figure S7. Cyclic voltammetry plots of different electrolytes based coin cell supercapacitors at different temperatures.

Figure S8. The lower limit of operating temperature and corresponding capacitance retention rate of TEMA-BF₄ in AN/ACT, TEA-BF₄/AN, PMIm-NTf₂/(AN-MB)^[1], SBP-BF₄/(AN-DBC)^[2], TEMA-BF₄/(AN-EA)^[3], SBP-FSI/PC^[4], Li-FSI/(MA-FEC)^[5] electrolytes.

Systems	Total	Cation	Anion	E _b (Ha)	E _b (eV)
TEMABF ₄	-757.63	-332.96	-424.60	-0.060717	-1.65
TEMABF ₄ -AN	-890.62	-332.96	-557.60	-0.051869	-1.41
TEMABF ₄ -AN-ACT	-1084.10	-332.96	-751.09	-0.043255	-1.17
TEMABF ₄ -AN-AN	-1123.47	-332.96	-790.46	-0.043927	-1.23
TEMABF ₄ -AN-PC	-1272.90	-332.96	-939.89	-0.045937	-1.25

Table S1. Comparison of binding energy obtained from DFT calculation.

References

- [1] X. Tang, D. Xiao, Z. Xu, Q. Liu, B. Ding, H. Dou, X. Zhang, J. Mater. Chem. A 2022, 10, 18374–18382;
- [2] F. Cheng, X. Yu, J. Wang, Z. Shi, C. Wu, *Electrochimica Acta* 2016, 200, 106–114;
- [3] R. R. Galimzyanov, S. V. Stakhanova, I. S. Krechetov, A. T. Kalashnik, M. V. Astakhov, A. V. Lisitsin, A. Y. Rychagov, T. R. Galimzyanov, F. S. Tabarov, J. Power Sources 2021, 495, 229442;
- [4] W. Zhang, J. Wang, D. Ruan, Q. Shi, F. Zhang, Q. Ren, Z. Shi, *Chem. Eng. J.* **2019**, *373*,1012-1019
- [5] X. Meng, J. Qin, Y. Liu, Z. Liu, Y. Zhao, Z. Song, H. Zhan, Chem. Eng. J. 2023, 465, 142913.