Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Material (ESI). This journal is © The Royal Society of Chemistry

RSCPublishing

Electronic Supplementary Information

Extreme Low Temperature Environment Operatable Hybrid Dual-Functioning Energy Device Driven from Supercapacitor/Piezo-Tribo Electric Generator System

Samayanan Selvam^{a,+}, Young-Kwon Park^{b,+}, Jin-Heong Yim^{a,*}

^aDivision of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, South Korea ^bSchool of Environmental Engineering, University of Seoul, Seoul, 02504 Korea

E-mail: jhyim@kongju.ac.kr;

ESI. Fig. 1. (i and ii) Ni XPS fitting details of PDMS and PVDF-PTFE coated composite

ESI. Fig. 2. (i and ii) SEM images of Cross section images of PEDOT:TREN:Ni@MnCO₃ composite

ESI Fig. 3. EDS mapping of PEDOT:TREN:Ni@MnCO₃/PDMS Composite Surface (i) and Cross section (ii)

ESI Fig. 4 EDS mapping of PEDOT:TREN:Ni@MnCO₃/PVDF-PTFE Surface (i) and Cross section (ii)

ESI Fig. 5 CV profile of PEDOT:TREN, PEDOT:TREN:MnCO₃ and PEDOT:TREN, PEDOT:TREN:Ni/MnCO₃ composite without GO (i), CV details at various current rate (ii) and EIS studies (iii) and (iv) Charge-discharge curves.

Calculations

The Gravimetric specific capacitance was calculated from the galvanostatic discharge curves, using the following equation 1.

$$C = \frac{I\Delta t}{m\Delta V} \dots 1$$

Also, the aerial capacitance was calculated from equation 2

$$C = \frac{I\Delta t}{A\Delta V} \dots 2$$

Where (I) is charge or discharge current, Δt (s) is the time for a full charge or discharge, *m* (g) designates the mass of the active material, A is the area of the active materials and ΔV signifies the voltage change after a full charge or discharge.

The energy density (E) considered by equation 3.

$$E = \frac{C(\Delta V)^2}{2}$$
 WhKg⁻¹.....3

Where C is the specific capacitance of the active materials, and ΔV is the potential window of discharge.¹⁻⁵

Temp.	Gravimetric Cap.				
	Fg ⁻¹				
-40°C	275				
-30°C	283				
-20°C	350				
-10°C	426				
-05°C	504				
0°C	491				
RT	475				

EIS. Table 1. Specific capacitance calculation details of PEDOT:TREN:Ni@MnCO₃

ESI. Fig 6 Electrolyte performance at low temperature conditions in terms of Specific capacitance and calculation details

Temp.	Gravimetric Cap.				
	Fg ⁻¹				
-40°C	11.6				
-30°C	11.9				
-20°C	12.7				
-10°C	18.3				
-05°C	25				
0°C	20				
RT	18				

EIS. Table 2. Specific capacitance calculation deta	ails of Electrolyte performance
---	---------------------------------

ESI. Fig 7. Energy density and Power density comparison from Ragone plot from reports on MnCO₃, Ni, PEDOT related Asymmetric supercapacitors (ASC)

ESI. Fig 8. Control experiment PTNG performance test under bending and twist conditions at after 1000 cycles workout; (a); output voltage error bar diagram of PTNG performance test under various load condition and temperature ranges (b-d) respectively.

ESI.	Table 3.	Comparative	analysis o	f similar SC-I	PTNG from	the literature.

Self-powered supercapacitor (SC-PTNG)	System	Electrolyte	Temp. (°C)	Specific capacitance	Charging Volt/ Output Volt)	Ref
PEDOT:TREN:PDMS:Ni@MnCO ₃ / PEDOT:TREN:PVDF- PTFE:Ni@MnCO ₃	SC- Piezo-Tribo hybrid	[BMIM][BF ₄]	RT	542 Fg ⁻¹	22 V	Our work
PEDOT:TREN:PDMS:Ni@MnCO ₃ / PEDOT:TREN:PVDF- PTFE:Ni@MnCO ₃	SC- Piezo-Tribo hybrid	[BMIM][BF ₄]	-80	317 Fg ⁻¹	11.9 V	Our work
AgNWS/NiOH/ P(VDF-TrFE)	SC- Piezo-Tribo hybrid	(PVA/KOH	RT	3.47 mFcm ⁻²	150 V	ESI. Ref. 12
Siloxene–PVDF piezofiber	SC- Piezo- separately	TEABF ₄	RT	27.58 mFcm ⁻²	207 mV	ESI. Ref. 13
Co-Fe ₂ O ₃ @ACC	SC- Piezo- separately	PVA-KCI- BaTiO ₃	RT	2.8 mFcm ⁻²	120 mV	ESI. Ref. 14
3D AG/PTFE/PDMS	SC-Tribo separately	NA	RT	550 Fg ⁻¹	3.2V	ESI. Ref. 15
Silicone-CF fiber	SC-Tribo separately	H₃PO₄/ PVA gel	RT	31.25Fg ⁻¹	42.9 V	ESI. Ref. 16

ESI. References

- 1. N. F. M. Yusof, N. H. Idris, M. F Din, S. R. Majid, N. Harun, M. M. Rahman, (2020) 10:9207 | https://doi.org/10.1038/s41598-020-66148-w
- 2. M. Manoj, D. Mangalaraj, N. Ponpandian and C. Viswanathan, RSC Adv., 2015, 5, 48705-48711
- 3. Z. Yang, Y. Jiang, L. X. Yu, B. Wen, F. Li, S. Sun and T. Hou, J. Mater. Chem., 2005, 15, 1807–1811
- 4. S. Selvam, B. Balamuralitharan, S.N. Karthick, K.V.Hemalatha, K. Prabakar and Hee-Je Kim, Anal. Methods, 2016, 8, 7937-7943.
- 5. H. Chen, Z. Yan, X.Y. Liu, X. L. Guo, Y. X. Zhang, Z. H. Liu, Rational design of microsphere and microcube MnCO₃@MnO₂ heterostructures for supercapacitor electrodes, Journal of Power Sources 353 (2017) 202-209
- 6. S. Selvam, J.-H. Yim, J. Energy Storage, 2021, 43, 103300
- 7. A. K. Mishra, A. K. Nayak, A. K. das, D. Pradhan, J. Phys. Chem. C 2018, 122, 11249
- 8. A. A. Nechikott, P. K. Nayak, RSC Adv., 2023, 13, 14139
- 9. X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang and Y. Chen, Adv. Funct. Mater., 2013, 23, 3353–3360.
- 10. W. Li, X. Xu, C. Liu, M. C. Tekell, J. Ning, J. Guo, J. Zhang, D. Gan, Adv. Funct. Mater. 2017, 27, 1702738
- 11. Y. Zhou, N. Lachman, M. Ghaffari, H. Xu, D. Bhattacharya, P. Fattahi, M. R. Abidian, S. Wu, K. K. Gleason, B. L. Ward;e. Q. M. Zhang, J. Mater. Chem. A, 2014, 2, 9964
- 12. S. Qin, Q. Zhabg, X. Yang, M. Liu, Q. Sun, Z. L. Wang, Adv. Energy Mater. 2018, 8, 1800069

- 13. K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan, S. S. Nardekar, S. Sahoo, S.-J. Kim, . Nat Commun 11, 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
- 14. D. Zhou, F. Wang, J. Yang, L, -Z, Fan, Chemical Engineering Journal, 2021, 406, 126825
- 15. J. Dong, S. Huang, J. Luo, J. Zhao, F. R. Fan, Z. –Q. Tian, Jung, Nano Energy, 2022, 95, 106971
- 16. Y. Yang, L. Xie, Z. Wen, C. Chen, X. Chen, A. Wei, P. Cheng, X. Xie, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 42356