Supplementary Information

Reforming material chemistry of CIGS solar cells via a precise Ag doping strategy

Jiseon Hwang,^{a,b} Ha Kyung Park,^c Donghyeop Shin,^a Inyoung Jung,^a Inchan Hwang,^a Young-Joo Eo,^a Ara Cho,^a Joo Hyung Park,^a Soomin Song,^a Yunae Cho,^{a,c} Jihye Gwak,^{d,e} Hyo Sik Jang,^{*b} William Jo^{*c} and Kihwan Kim^{*a,e}

^a Photovoltaics Research Department, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

^b Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea

^c Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea

^d New and Renewable Energy Institute, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

^e University of Science and Technology, Daejeon 34113, Republic of Korea

* Corresponding authors: <u>hschang@cnu.ac.kr</u>, <u>wmjo@ewha.ac.kr</u> and <u>kimkh@kier.re.kr</u>

Fig. S1 XRD (θ -2 θ scan) patterns of CIGS and ACIGS films. The Ag incorporation was found to weaken (220)/(204) preferred orientation. The ACIGS films showed (112) preferred orientation similar to the powder pattern of chalcopyrite.

Fig. S2 (112) XRD (θ -2 θ scan) patterns of CIGS films. The CIGS film (i.e., control) shows broad (112) reflections that originate from relatively inhomogeneous Ga/(Ga+In) compositional depth profiles and the ACIGS film (Ag incorporation in the second stage) appeared to exhibit a slightly higher Ga/(Ga+In) ratio than the others, which is verified by the SIMS analyses.

Fig. S3 Further APT results of CIGS without and with Ag incorporation: 3D atom maps of (a) CIGS and (b) ACIGS specimens; 1D concentration profiles of matrix elements: (c) without and (d) with Ag incorporation; and 1D concentration profiles of alkali (Na and K) elements: (e) without and (f) with Ag incorporation.

Fig. S4 Box plot of the extracted $\triangle CPD_{GB}$ values ($\triangle CPD_{GB}$ = CPD_{GB} - CPD_{IG}). The CIGS sample with Ag incorporation in the first stage showed the highest average of $\triangle CPD_{GB}$ and that of the CIGS sample without Ag was the lowest. The CIGS sample with Ag incorporation in the second stage showed a relatively wide range of $\triangle CPD_{GB}$ values indicating inhomogeneous CPD value distribution.

Fig. S5 Illuminated JV (a) and external quantum efficiency (EQE) (b) curves of the best CIGS solar cells in each case.

	Eff (%)	FF (%)	$V_{\rm OC}$ (V)	$J_{\rm SC}~({\rm mA/cm^2})$
(a) wo Ag	16.7	75.1	0.686	32.5
(b) Ag – 1st	17.6	79.2	0.712	31.2
(c) Ag – 2nd	17.0	73.8	0.705	32.7

Table S1. Illuminated JV characteristics of CIGS solar cells of Fig. S5.

Fig. S6 Drive-level capacitance profiling (DLCP) curves of CIGS solar cells: (a) control, (b) Ag incorporation in the first stage, and (c) Ag incorporation in the second stage.

	Temperature	<x> nm</x>	$N_{DLCP} (10^{15}/cm^3)$
Without Ag (control)	80 K	714.40	1.82
	100 K	690.40	1.49
	200 K	431.01	1.79
	300 K	301.12	2.87
Ag - first stage —	80 K	651.06	1.17
	100 K	619.27	1.13
	200 K	394.02	1.98
	300 K	369.66	1.85
Ag - second stage	80 K	758.85	1.11
	100 K	715.24	1.02
	200 K	483.38	1.56
	300 K	334.22	1.49

Table S2. Moment of charge response ($\langle x \rangle$) and drive-level density (N_{DLCP}) values derived from Fig. S6.