Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Continuous Wet Chemical Synthesis of Mo(C,N,O)_x as Anode Materials for Li-Ion Batteries

Mana Abdirahman Mohamed^{[a]+} (0000-0003-0708-7623),

Stefanie Arnold^{[b,c]+} (0000-0002-4954-4610),

Dr. Oliver Janka^[a] (0000-0002-9480-3888),

Dr. Antje Quade^[e] (0000-0003-0814-4319),

Jörg Schmauch^[f],

Prof. Dr. Volker Presser^{[b,c,d]*} (0000-0003-2181-0590),

Prof. Dr. Guido Kickelbick^{[a]*} (0000-0001-6813-9269)

- [a] Saarland University, Inorganic Solid-State Chemistry, Campus C4 1, 66123 Saarbrücken, Germany
- [b] INM Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- [c] Saarland University, Department of Materials Science and Engineering, 66123 Saarbrücken, Germany
- [d] Saarene Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
- [e] Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
- [f] Physics Department, Saarland University, Campus D2.2, 66123 Saarbrücken, Germany

+ equal contributions

* Corresponding authors:

GK: guido.kickelbick@uni-saarland.de

VP: volker.presser@leibniz-inm.de

MoC_{0.67}, *Fm*3*m* MoC_{0.49}, *P*6₃/*mmc*

Figure S1: Crystal structures of a) orthorhombic Mo_2C ,^{1,2} b) cubic $MoC_{0.67}$,³ and c) hexagonal $MoC_{0.49}$ Mo atoms are depicted in blue, C atoms in black.

Figure S2: General reaction scheme, first step precursor precipitation followed by pyrolysis reaction.

	Carbon	Hydrogen	Nitrogen
	/ mass%	/ mass%	/ mass%
Ideal Mo ₂ C	5.89	0	0
Ideal MoOC	9.69	0	0
Ideal Mo₂N	0	0	6.80
PPD/molybdate (9:1) (600°C)	20.85	0.24	0.74
PPD/molybdate (10:1) (600°C)	21.45	0.22	0.59
PPD/molybdate (1:1) (750°C)	0.38	0	2.56
PPD/molybdate (2:1) (750°C)	2.01	0	0.22
PPD/molybdate (5:1) (750°C)	3.19	0	0.14
PPD/molybdate (9:1) (750°C)	22.75	0	0.24
PPD/molybdate (10:1) (750°C)	20.02	0	0.24
PPD/molybdate (15:1) (750°C)	22.62	0	0.30
PPD/molybdate (18:1) (750°C)	23.57	0	0.20
PPD/molybdate (20:1) (750°C)	23.15	0	0.19
PPD/molybdate (25:1) (750°C)	22.86	0	0.23
PPD/molybdate (30:1) (750°C)	22.59	0	0.23

Table S1: Elemental analysis of PPD/molybdate precursors after the pyrolysis.

Figure S3: Electrochemical performance of pyrolyzed PPD/molybdate hybrid materials. Cyclic voltammograms at different scan rates and potential range between 0.01 V and 3.00 V vs. Li⁺/Li for (a) 1:1 and (b) 10:1 pyrolyzed at 750 °C as well as (c) 9:1 and (d) 10:1 synthesized at 600 °C.

Figure S4: Cyclic voltammograms at different scan rates and kinetic fitting to calculate b-values for (a-b) PPD/molybdate (1:1) (750°C); (c-d) PPD/molybdate (10:1) (750°C); (e-f) PPD/molybdate (9:1) (600°C); (g-h) PPD/molybdate (10:1) (600°C).

Supporting References

- Parthé, E.; Sadogopan, V. The Structure of Dimolybdenum Carbide by Neutron Diffraction Technique. *Acta Crystallogr.* **1963**, *16*, 202–205. https://doi.org/10.1107/s0365110x63000487.
- (2) Norlund Christensen, A. A Neutron Diffraction Investigation on a Crystal of Alpha-Mo₂C. *Acta Chem. Scand. Ser. A* **1977**, *31*, 509–511.
- (3) 'Rudy, E. .; 'Brukl, C. E. .; 'Windisch, S. . Constitution of Niobium (Columbium)-Molybdenum-Carbon Alloys. *Trans. Metall. Soc. AIME* **1967**, *239*, 1796–1808.