Supporting Information

Continuous Wet Chemical Synthesis of Mo(C,N,O)$_x$
as Anode Materials for Li-Ion Batteries

Mana Abdirahman Mohamed$^{[a]}$+ (0000-0003-0708-7623),
Stefanie Arnold$^{[b,c]}$+ (0000-0002-4954-4610),
Dr. Oliver Janka$^{[a]}$ (0000-0002-9480-3888),
Dr. Antje Quade$^{[e]}$ (0000-0003-0814-4319),
Jörg Schmauch$^{[f]}$,
Prof. Dr. Volker Presser$^{[b,c,d]}$* (0000-0003-2181-0590),
Prof. Dr. Guido Kickelbick$^{[a]}$* (0000-0001-6813-9269)

$^[a]$ Saarland University, Inorganic Solid-State Chemistry, Campus C4 1, 66123 Saarbrücken, Germany
$^[b]$ INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
$^[c]$ Saarland University, Department of Materials Science and Engineering, 66123 Saarbrücken, Germany
$^[d]$ Saarene - Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
$^[e]$ Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
$^[f]$ Physics Department, Saarland University, Campus D2.2, 66123 Saarbrücken, Germany

+ equal contributions
* Corresponding authors:
 GK: guido.kickelbick@uni-saarland.de
 VP: volker.presser@leibniz-inm.de
Figure S1: Crystal structures of a) orthorhombic Mo$_2$C1,2, b) cubic MoC$_{0.67,3}$, and c) hexagonal MoC$_{0.49}$, Mo atoms are depicted in blue, C atoms in black.

Figure S2: General reaction scheme, first step precursor precipitation followed by pyrolysis reaction.

Table S1: Elemental analysis of PPD/molybdate precursors after the pyrolysis.

<table>
<thead>
<tr>
<th></th>
<th>Carbon / mass%</th>
<th>Hydrogen / mass%</th>
<th>Nitrogen / mass%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Mo$_2$C</td>
<td>5.89</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ideal MoOC</td>
<td>9.69</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ideal Mo$_2$N</td>
<td>0</td>
<td>0</td>
<td>6.80</td>
</tr>
<tr>
<td>PPD/molybdate (9:1) (600°C)</td>
<td>20.85</td>
<td>0.24</td>
<td>0.74</td>
</tr>
<tr>
<td>PPD/molybdate (10:1) (600°C)</td>
<td>21.45</td>
<td>0.22</td>
<td>0.59</td>
</tr>
<tr>
<td>PPD/molybdate (1:1) (750°C)</td>
<td>0.38</td>
<td>0</td>
<td>2.56</td>
</tr>
<tr>
<td>PPD/molybdate (2:1) (750°C)</td>
<td>2.01</td>
<td>0</td>
<td>0.22</td>
</tr>
<tr>
<td>PPD/molybdate (5:1) (750°C)</td>
<td>3.19</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td>PPD/molybdate (9:1) (750°C)</td>
<td>22.75</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>PPD/molybdate (10:1) (750°C)</td>
<td>20.02</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>PPD/molybdate (15:1) (750°C)</td>
<td>22.62</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>PPD/molybdate (18:1) (750°C)</td>
<td>23.57</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td>PPD/molybdate (20:1) (750°C)</td>
<td>23.15</td>
<td>0</td>
<td>0.19</td>
</tr>
<tr>
<td>PPD/molybdate (25:1) (750°C)</td>
<td>22.86</td>
<td>0</td>
<td>0.23</td>
</tr>
<tr>
<td>PPD/molybdate (30:1) (750°C)</td>
<td>22.59</td>
<td>0</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Figure S3: Electrochemical performance of pyrolyzed PPD/molybdate hybrid materials. Cyclic voltammograms at different scan rates and potential range between 0.01 V and 3.00 V vs. Li⁺/Li for (a) 1:1 and (b) 10:1 pyrolyzed at 750 °C as well as (c) 9:1 and (d) 10:1 synthesized at 600 °C.
Figure S4: Cyclic voltammograms at different scan rates and kinetic fitting to calculate b-values for (a-b) PPD/molybdate (1:1) (750°C); (c-d) PPD/molybdate (10:1) (750°C); (e-f) PPD/molybdate (9:1) (600°C); (g-h) PPD/molybdate (10:1) (600°C).
Supporting References

