electronic supplementary information (ESI)

InCl₃-modified SnO₂ as Electron Transport Layer for Cd-free

Antimony Selenide solar cells

Lei Huang,^{#ab} Junjie Yang,^{#ab} Yujian Xia,^{#c} Peng Xiao,^{ab} Huiling Cai,^{ab} Aoxing Liu,^{ab} Yan Wang,^{ab} Xiaosong Liu,^{*c} Rongfeng Tang,^{*ab} Changfei Zhu^{ab} and Tao Chen^{*ab}

^a·Address here. CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. ^b·Institute of Energy, Hefei Comprehensive National Science Center, Hefei, China. E-mail: <u>rftang@ustc.edu.cn</u>; <u>tchenmse@ustc.edu.cn</u>.

^{c.}National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, China. E-mail: <u>xsliu19@ustc.edu.cn</u>.

[#]These authors contributed equally to this work.

Figure S1. 2D and 3D AFM images of (a) SnO₂ and (b) SnO₂:InCl₃.

igure S2. (a) Sn 3d and (b) O 1s SRPES spectra of SnO₂:InCl₃ with different photon energies.

Figure S3. Tauc plot of (a) SnO₂ and (b) SnO₂:InCl₃ on top of the FTO substrate.

Figure S4. SCLC curves of SnO₂ and SnO₂:InCl₃.

Figure S5. Raman spectra of the Sb₂Se₃ films that deposited on SnO₂ and SnO₂:InCl₃.

Figure S6. Surface SEM images of Sb₂Se₃ films on (a) SnO₂ and (c) SnO₂:InCl₃ at small magnifications.

Figure S7. High-resolution XPS spectra of In 3d on SnO₂:InCl₃ ETL deposited with 3 nm of Sb₂Se₃ film.

Figure S8. TAS spectrum of SnO₂/Sb₂Se₃.

Figure S9. Cross-sectional SEM images of the device with structure of FTO/SnO₂:InCl₃/Sb₂Se₃/Spiro-OMeTAD/Au.

Note to the DLTS measurement:

Bulk defect properties of the Sb_2Se_3 were studied by the deep-level transient spectroscopy (DLTS) characterization.

The Arrhenius plots are calculated from DLTS test signals by Equation (1) and (2):

$$ln(\tau_e \upsilon_{th,n} N_C) = \frac{E_C - E_T}{k_B T} - ln(X_n \sigma_n)$$
(1)

$$ln(\tau_e \upsilon_{th,p} N_V) = \frac{E_T - E_V}{k_B T} - ln(X_n \sigma_p)$$
(2)

Where the τ_e is the emission time constant, N_C the conduction band state density, N_V the valence band state density, E_C the conduction band, E_T the trap energy level and E_V the valence band. $X_n(X_p)$, $\sigma_n(\sigma_p)$ and $v_{th,n}(v_{th,p})$ are the entropy factor, the capture cross section and the thermal velocity for electron (hole), respectively. Trap activation energies (E_a , E_C - E_T or E_T - E_V) and capture cross section (σ) were determined from the Arrhenius plot, and more specifically, from the slope and y-axis intercept of the fitting line, separately. N_T is the trap concentration, which can be calculated by the Equation (3):

$$\frac{2Ns\frac{\Delta C}{C_R}}{N_T =}$$
(3)

where N_S is the shallow donor concentration, C_R the capacitance under reverse bias, ΔC the amplitude of transient capacitance.