Electronic Supplementary Information

Interface Suppressed High-Quality Symmetrical Bifacial Flexible

CZTSe Solar Cells through a Green Electrodeposition Process

Jingling Liu,^a Hang Cai,^a Xinyu Wu,^a Sheng Liu,^a Ying Xue,^a Xinsheng Liu,^a Ke Cheng^{*a} and Zuliang Du^{*a}

^a Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China

Corresponding Author

*<u>zld@henu.edu.cn</u>, <u>ck@henu.edu.cn</u>

Figure S1. Cross-section SEM image of bifacial flexible Cu/Sn/Zn preformed layers.

Figure S2. Raman spectra for bifacial flexible CZTSe thin films.

Figure S3. Cross-section SEM image of bifacial flexible CZTSe devices.

Figure S4. (a and b) cross-sectional SEM images and EDS line scanning profiles along the white lines for the absorber layer and devices, respectively (a and b for the absorber layer; c and d for the device).

Figure S5. Statistical distribution of PCE, FF, J_{sc} and V_{oc} for bifacial flexible CZTSe solar cells.

Figure S6. (a) The Plots of dV/dJ versus $(J+J_{sc})^{-1}$, dJ/dV vs V, and $J+J_{sc}$ -GV vs V-R_sJ,

respectively, for the bifacial flexible CZTSe solar cells extracted from dark J-V.

Figure S7. (a-d) The variations of PCE, V_{oc} , J_{sc} , and FF for continuously irradiation for

3h.

Figure S8. $A \ln(J_0) \text{ vs.} 1/KT$ plot of CZTSe device extracted from J-V-T curve in Figure

5f.