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Fig.S1. (a) Photograph of the screen printing plate. (a´) The dimension of the interdigital electrode.
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Fig.S2. (a) Influence of FTS concentration on water contact angle (WCA), insets are the digital 
photographs of WCA. (b) Change of conductivity and WCA with MWCNT concentration. 
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Fig.S3. Raman spectrum of the NW, TPU, and MFTNW.

In the Raman spectrum of MFTNW, the typical characteristic peaks of NW, TPU and MWCNT were 

obviously identified. The symmetric stretch vibration of C=C (1611 cm-1) and the stretching vibrations of 

−CH2 (2917 cm-1) of PET and TPU, and the D-band (1328 cm-1), G-band (1585 cm-1) and 2D band (2656 

cm-1) of MWCNT were all observed, proving the successful coating of MWCNT and TPU on the NW.
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Fig.S4. FT-IR spectra of NW, TPU, MWCNT/FTS/TPU and MFTNW.
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Fig.S5. Influence of TPU concentration on solution viscosity.
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Fig.S6. Digital photograph showing the non-adhesive behavior of MFTNW.
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Fig.S7. Sliding angle of the hydrophobic fabric at various concentrations of TPU
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Fig.S8. (a) Photographs of pristine, washed and rubbed NW coated with MWCNT/FTS. (b) Conductivity 
variation and (c) WCA change of samples after rubbing or washing, respectively. 
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Fig.S9. Photograph of NW coated with (a) MWCNT/FTS and (b) MWCNT/FTS/TPU before and after 
rubbing. 
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Fig.S10. Stress−strain plots of NW and MFTNW-1.5.
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Fig.S11. Retained stress and conductivity of MFTNW after 5000 compression cycles
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Fig.S12. (a) The relationship between conductivity variation and bending cycles. Insets are photographs 
showing the bending of MFTNW. (b) SEM images of MFTNW before and after 6000 bending cycles.
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Fig.S13. WCA of MFTNW after bending and compressing. 
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Fig.S14. WCA of MFTNW after slat, acid, and alkali treatment.
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Fig.S15. Surface morphology of (a) pristine MFTNW, MFTNWs after (b) slat, (c) acid and (d) alkali 
treatment for 28 h.
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Fig.S16. UV-vis-NIR absorption spectra of NW and MFTNW.
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Fig. S17. Change of ΔG/G0 against irradiating time under ultraviolet light. Inset is a photograph of 
MFTNW under an ultraviolet lamp.
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Fig.S18. Surface morphology of (a) cotton fabric and (b) interdigital electrode coated cotton fabric. The 
interdigital electrode was dyed yellow to intuitively reflect the structure of broken circuit.
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Fig.S19. Change of temperature and ΔG/G0 against irradiating time under 1 sun. Insets are the typical 
infrared images of samples at different irradiation periods.
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Fig.S20. (a) The relationship between MWCNT concentration and sensitivity of sensors. (b) Conductivity 
variation of samples after rubbing and washing.
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Fig.S21. The relationship between TPU concentration and sensitivity of sensors.
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Fig.S22. Stress−strain plots of MFTNW-0.5, MFTNW-1.5, and MFTNW-2.5.
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Fig.S23. Schematic diagram of the circuit containing all-fabric piezoresistive sensor (AFPS).

To better understand the working mechanism of our sensor, an equivalent circuit model was 

established to reveal the resistance variation under pressure. As presented in Fig.S22, total resistance 

(RT) of AFPS was composed of three components: the resistance (RF) of fabric patterned interdigital 

electrode (FPIE), contact resistance (RCMF) between MFTNW and FPIE, and the resistance (RM) of 

MFTNW. As such, RT of the AFPS was calculated by the following Equation:

                    RT = RF + RCMF + RM                                            (1)

As FPIE used in this work was made of highly conductive silver metal, RF was much smaller than 

RCMF and RM. When the pressure was applied, both RCMF and RM decreased, resulting in a decline in RT. 

Thereby, Equation 1 can be simplified as RT ≈ RCMF + RM.
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Fig. S24. ΔG/G0 variation of AFPS during one loading-unloading cycle.
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Fig.S25. Hydrophobicity of (a) spunbond NW, (b) FPIE, and (c) sensor. 
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Fig.S26. Photograph demonstrating the easy removal of coffee powders from AFPS.
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Fig. S27. The images before and after attaching AFPS and PDMS/MWCNTs film on the human skin surface 
for 3 h.
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Fig.S28. ΔG/G0 signals resulted from the weight of 413 mg.

When an object weighing 413 mg (~210 Pa) was placed on the sensor, an increased ΔG/G0 value 

could be observed. This proved that AFPS was capable of detecting small pressure (<0.5 kPa).
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Fig.S29. (a) photographs showing the bending of sensor. (b) Pressure-response performance of sensor 

before and after 1500 bending-releasing cycles.
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Fig. S30. ΔG/G0 variations of AFPS during cyclic compression under different temperature.
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Fig.S31. ΔG/G0 signals induced by forefinger bending. Insets are photographs showing a sensor-loaded 
glove for detecting forefinger bending signals.
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Fig.S32. ΔG/G0 signals caused by different bending angles of forefinger.
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Movie S1. Video presenting low adhesion of MFTNW to water.

Movie S2. Video showing wireless transmission of sensor output signal.


