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Experimental

Chemicals

All solutions were prepared with deionized Milli-Q water. Sodium hydroxide (NaOH),
perchloric acid (HCIO,4, 60%), and sodium nitrate (NaNO;) were purchased from Daejung
Chemicals (Siheung, Korea). 4-hydroxy-TEMPO (free radical) and 4,4-bipyridyl were
purchased from Alfa Aesar. Chloroacetyl chloride, IRA-900(chloride form), hydrochloric
acid (HCl, 37%), and sodium chloride (NaCl) were purchased from Sigma-Aldrich. 1-
methylimidazole and 1,3-dibromopropane, trimethylamine were purchased from TCI. Unless

otherwise noted, all chemicals were purchased and used without further purification.

Synthesis of MIMAcO-TEMPO
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4-hydroxy TEMPO (300 mmol, 51.6 g) was dissolved in dichloromethane (600 mL) at room
temperature. Then, the solution was cooled at 0 °C and chloroacetyl chloride (330 mmol, 26.2
mL) was added to the solution dropwise. The mixture was stirred at room temperature for 4
hours. After the reaction had completed, the reaction mixture was extracted with ethyl acetate
(300 mL x 3 times), and washed with H,O (500 mL x 3 times) and brine (300 ml). The
combined organic extracts were dried over anhydrous MgSO,, and then filtered and

concentrated in vacuo. Purification via silica column chromatography with gradient condition



(Hex 100 ~ Hex:EA=4:1) led to the production of 4-(2-chloroacetoxy)-TEMPO as a red solid
(63.2 g, 85% yield). 4-(2-Chloroacetoxy)-TEMPO and 1-methylimidazole were stirred in
acetonitrile at 60 °C for 2 days. The reaction mixture was concentrated in vacuo and diluted in
water (300 mL). The water layer was washed with ethyl acetate (300 mL x 3 times) and

concentrated in vacuo to yield MIMAcO-TEMPO as a red solid (71.7 g, 85 %yield).

[4-(2-Chloroacetoxy)-TEMPO] 'H NMR (500 MHz, DMSO-ds) & 5.03 — 4.89 (m, 1H), 4.30
(s, 2H), 1.90 — 1.78 (m, 2H), 1.42 (t,J= 11.7 Hz, 2H), 1.04 (d, J= 6.4 Hz, 12H). EI-MS (m/z)=

248, 154, 139, 124, 1009.

[MIMAcO-TEMPO] 'H NMR (500 MHz, DMSO-dy) 6 9.26 (s, 1H), 7.79 — 7.70 (m, 2H), 5.28
(s, 2H), 5.02 (tt, J=11.4,4.2 Hz, 1H), 3.86 (s, 3H), 1.87 (dd, /= 12.2, 4.1 Hz, 2H), 1.48 (t, J
=11.8 Hz, 2H), 1.07 (d, J = 14.1 Hz, 12H). HRMS (FAB+ mode) calculated for C;sH,sN30;

[M-CI]": 295.1895. found: 295.1893.

Synthesis of 4-[4-(N-methylimidazolium)-benzyl-oxyl]-2,2,6,6-tetramethyl

piperidine-1-oxyl chloride

4-[4-(N-methylimidazolium)-benzyl-oxyl]-2,2,6,6-tetramethyl piperidine-1-oxyl chloride was
synthesized according to the procedure in the previous literature.! In the procedure, a,a'-

dichloro-p-xylene was used instead of a,a’-dibromo-p-xylene.



'H NMR (500 MHz, DMSO-dy) & 9.34 (s, 1H), 7.79 (t, J = 1.8 Hz, 1H), 7.72 (t, J = 1.8 Hz,
1H), 5.42 (s, 2H), 4.49 (s, 2H), 3.85 (s, 3H), 3.67 (tt, J= 11.0, 4.0 Hz, 1H), 1.92 (ddd, J=11.0,

4.1,1.7 Hz, 2H), 1.32 (t, J= 11.6 Hz, 2H), 1.06 (d, J= 28.2 Hz, 13H). LC-MS: [M-CI]*=357.1

Synthesis of BTMAP-Vi
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1,1'-bis(3-(trimethylammonio)propyl)-[4,4'-bipyridine]-1,1'-diium tetrachloride (BTMAP-Vi)
was synthesized according to the procedure in the previous literature.? 'H NMR (500 MHz,
D,0) 8 9.22 (d,J=7.0 Hz, 2H), 8.70 — 8.58 (m, 2H), 4.94 — 4.84 (m, 2H), 3.67 — 3.55 (m, 2H),

3.21 (s, 9H), 2.75 — 2.64 (m, 2H).
Computational Details

All DFT calculations were performed using the ORCA 5.0.1 quantum chemistry package, at
the PBE0/6-31+G(d,p) level of theory for both structural optimization and Gibbs free energy
calculation.>® To account for the solvated environment, the conductor-like polarizable
continuum model (CPCM) was used with a dielectric constant set to that of water.? Unrestricted
Hartree-Fock (UHF) calculations were performed for each of the systems to obtain singlet and
triplet state energy. Structural optimization was carried out using the BFGS algorithm, and the
default convergence criterion was implemented in ORCA (energy change tolerance 5.0e-06
Eh, maximum gradient 3.0e-04 Eh/bohr, RMS gradient tolerance 4.0e-04 Eh/bohr, Maximum

displacement 4.0e-03 bohr, RMS displacement 2.0-03 bohr).

Permeability Studies

An H-type cell was used to measure the permeability of MIMAcO-TEMPO and 4-OH-



TEMPO. 50 mL of 0.2 M TEMPO derivative and 0.2 M NaCl solution were placed into the
concentrate and dilute chambers, respectively. An anion exchange membrane (Selemion®
AMVN) with active interfacial area of 3.12 cm? was located between the concentrate and dilute
chambers. Concentration gradients around the membrane were minimized by continuously
stirring each chamber throughout the test period. To quantify the TEMPO derivatives
permeating from the concentrate chamber to the dilute chamber, 4 ml of solution was sampled
from the dilute chamber; then, its TEMPO concentration was measured using a UV-Vis.
spectrophotometer (Mega-800, Scinco). The permeability can be calculated from the

concentration variation of TEMPO derivatives in the dilute chamber as a function of test time:

where P is permeability of each TEMPO derivative through the membrane, C, is the initial
TEMPO concentration (0.2 M) in the concentrate chamber, Cq4 is the TEMPO concentration in
the dilute chamber, V is the volume of solution in each chamber (50 mL), A and 6 are the

surface area (3.12 cm?) and thickness (100 um) of the membrane, and t stands for the test time.

Electrochemical Measurements

Cyclic Voltammetry (CV) was carried out in a home-made three-electrode system using a
potentiostat (VSP, BioLogic). Graphite bipolar plates (Morgan) were used as working and
counter electrodes, each adjacent to copper current collectors. By covering the graphite
electrode with a PVC gasket with a hole in it, the active surface area of the working electrode
was kept constant at 0.187 cm?. Ag/AgCl (3M NaCl) was used as the reference electrode. CV
data were obtained at scan rates in a range of 2 — 100 mV/s. For electrochemical impedance

spectra (EIS) analysis, an AC voltage of 10 mV amplitude with 100 mHz — 1 MHz frequency



range was applied. EIS data was recorded at open circuit voltage in a 50 mM TEMPO
derivative and 1.0 M NaCl solution. Glassy carbon was used as working electrode to clearly
indicate differences in charge-transfer behavior. Its active surface area was kept constant at
0.196 cm?. Linear sweep voltammetry (LSV) was conducted on a glassy carbon rotating disk
electrode at rotating speeds from 100 to 2500 rpm in 0.5 M NaCl solutions containing either 1
mM MIMAcO-TEMPO or the same concentration of 4-OH-TEMPO. For the LSV analysis,
the potential was scanned from 0.3 to 1.2 V at 5 mV/s. The limiting currents (i.e. the mass
transport-limited current) were obtained at 1.0 V and plotted over the square root of the rotating
speed. The data were fitted to yield a straight Levich plot, with the slope (i;) defined by the

Levich equation (equation 1).10

i, = 0.620FAC,D* w2y~ 1/° .

where 7 = 1 is the electron number for electro-oxidation of TEMPO, F = 96485 C mol™! is the
Faraday's constant, A4 is the electrode area, Cp and D are the bulk concentration and diffusion
coefficient of TEMPO, w is the angular rotation rate of the electrode, and v is the kinematic
viscosity, which are estimated to 0.0383 and 0.0426 cm?/s for 4-OH-TEMPO and MIMAcO-
TEMPO, respectively. The kinetic currents (i;) were obtained at the different electrode
potentials from the Koutecky—Levich equation described as equation 2, where i is the measured

current.

1/i = 1/i, + 1/(0.620FAC,D*3w"/ >y~ 1/6) )

Then, logiy vs. |E-E”| plot was constructed from the equation 3 and shown in Figure 3b of the

revised manuscript.'!

logi, = logiy+ aF(|E-E"|)/2.303RT 3)



Where ij is the exchange current, R is the gas constant, and 7 is the absolute temperature. From

the y-intercept of the plot in Figure 3b, i, was estimated, which is defined as follows.

Where, kq is the electron transfer rate constant for electro-oxidation of 4-OH-TEMPO and
MIMACcO-TEMPO. To analyze the electrochemical behavior on an ultramicroelectrode
(UME), a platinum UME with a radius of 5 um was applied as a working electrode.
Electrochemical measurements were conducted in a home-built Faraday cage at room
temperature. Voltammetric simulations were performed using DigiElch Professional v6.F

software (ElchSoft.com).
Characterizations

UV-Vis. spectra were measured with a spectrometer (Mega-800, Scinco) using a cuvette cell
with 1.0 cm width. UV-Vis. absorption profile was obtained in a wavelength range of 300 nm
~ 600 nm. The sampling interval was set at 1 nm. '"H NMR and '3C NMR spectra were recorded
at ambient temperature on a JEOL (500 MHz) spectrometer and Bruker AVANCE NEO
Nanobay (9.4 T) spectrometer using the solvent peak as an internal reference (DMSO-d6 or
D20). Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), and m
(multiplet). Coupling constants (J) are reported in Hertz (Hz). GC-MS(EI) analysis was
conducted on a GC-MSD system (HP6890 Gas Chromatography, HP5973 Mass Selective
Detector, Agilent Technologies). LC-MS(ESI) analysis was conducted on an HP1100 HPLC
System (Agilent6130 Single quadrupole LC/MS, Diode Array Detector, lon source: ESI, Mass

range: m/z 2~3,000.).
Flow Battery Tests

AOREFB single flow cells consisting of felt electrodes, graphite bipolar plates, copper current



collectors, polytetrafluoroethylene flow frames, and a sheet of anion exchange membrane
(Selemion® AMVN, 100 um thickness) were assembled for the charge-discharge test. A piece
of carbon felt (XF-30A, Toyobo, 4.3 mm thickness), with surface area of 35 cm?, was used as
the negative and positive electrodes. Carbon felts were mounted in polytetrafluoroethylene
flow frames with a thickness of 3 mm and fixed at a compression ratio of about 30%. Graphite
bipolar plates (Sigracell TF6, SGL Carbon, 0.6 mm thickness) served to electrically connect
the felt electrode and the copper current collector, preventing the current collector from being
corroded by the electrolyte. The membrane was soaked in 3 M NacCl solution for at least 24
hours prior to cell assembly. The single cell was connected to the external electrolyte reservoir
by Tygon tubes (Tygon® Chemical, Masterflex). Electrolytes were circulated at a constant flow
rate of 100 mL/min using a peristaltic pump (Masterflex pump, Cole-Parmer). 40 ml of
TEMPO catholyte was combined with an excess volume of BTMAP-Vi (80 mL ~ 135 mL) to
exclude the effect of anolyte-derived capacity loss. The molar ratio of TEMPO to BTMAP-Vi
was adjusted to approximately 1:2 (Table S5). Furthermore, to minimize the effect of SoC
imbalance between the catholyte and anolyte, half the volume of the catholyte (20 ml) was
replaced with discharged TEMPO solution after the 15 charge process. While the catholyte was
charged and discharged in the SoC range of 0 ~ 100%, the anolyte SoC changed in a range of
25% ~ 75%. All electrolytes were prepared in an Ar filled glovebox, using N,-purged DI water
as solvent to eliminate the dissolved oxygenin the electrolytes. Charge-discharge performances
of AORFBs were tested using a Maccor Series 400 battery test system in the Ar filled glovebox.
The rate performance was tested at current densities of 20 to 100 mA/cm? with an increment
of 20 mA/cm?. For the cycling test, the AORFB cells were operated within a voltage cut-off of

0.8-1.4 V at current density of 40 mA/cm?.
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Figure S1. UV-Vis spectra of (a) 4-OH-TEMPO- and (b) 4-OH-TEMO™" dissolved in 0.2 M
NaCl solution under argon atmosphere at room temperature. The initial concentration of 4-OH-
TEMPO-/ 4-OH-TEMO™ was 0.1 M. The absorbance intensity decreased with degradation time
because the solution color gradually changed from yellow to colorless on the degradation

progress.
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Figure S2. UV-Vis spectra obtained for (a) 4-OH-TEMPO- and (b) 4-OH-TEMPO" with

different concentrations ranging from 6.25 mM to 100 mM. To calculate calibration curves for

4-OH-TEMPO-(c) and 4-OH-TEMPO™(d), the absorbance at wavelengths of 429 nm and 476

nm was plotted as a function of the TEMPO concentration.
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Figure S3. UV-Vis spectra for 4-OH-TEMPO- and 4-OH-TEMO™ dissolved in 0.2 M NaCl
solution 2 hours after treatment with different amounts of HCl or NaOH. The initial

concentration of 4-OH-TEMPO:-/ 4-OH-TEMO™ was 0.1 M.
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Figure S4. 'H NMR spectra of 0.1 M 4-OH TEMPO- 2 hours after treatment with 5 ~ 40 mM
HCI or NaOH solution, recorded in DMSO-ds . Samples were reduced by phenyl hydrazine
prior to characterization. The peak at 4.9 ppm is assigned to the proton of hydroxyl group (-
OH), and gradually disappeared in acid solution and was not observed in basic conditions. This
is probably because H/D* exchange between 4-OH-TEMPO and D,0O, which may be

generated from DMSO-dg in the presence of acid/base catalyst.
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Figure S5. GC-MS(E]) spectra of 4-OH-TEMPO- 2 hours after treatment with HC] or NaOH

solution.
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Figure S7. GC-MS(EI) spectra of 4-OH-TEMPO" 2 hours after treatment with 40

mM NaOH solutions.



0.1 M Charged 4-OH TEMPO in H,0 after 2 h
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was reduced by phenyl hydrazine prior to characterization. Peaks in the region from 6.5 to 7.5
ppm belong to phenyl hydrazine.
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Figure S13. Optimized molecular structures of three OH-TEMPO adducts with different
reaction sites (Site-I, II, and IIT) in MIMAcO-TEMPO(a-c) and 4-OH-TEMPO(d-e).
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Figure S23. The CVs of 1% (black) and 5 (red) cycle associated with electrode-oxidation of 3
mM Fe(CN)g* on Pt UME where the electrochemical window was set to be from 0.03 to 1.03

V; the aqueous solution contained 0.5 M NaNOj; and pH was adjusted to 6.4.
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Figure S29. 1H NMR spectrum of 0.1 M MIMAcO-TEMPO after cycles recorded in DMSO-
ds. Sample was reduced by phenyl hydrazine prior to characterization. Peaks in region from 6.5

to 7.5 ppm belong to phenyl hydrazine.
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after (b) 300 cycles and (c) 1,000 cycles.
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Table S1. pH of TEMPO derivatives*

entry name structure pH
0
| 4-Hydroxy-2,2,6,6-tetramethylpiperidine N 713
1-oxyl (4-OH-TEMPO) '
OH
o
XY
4-[4-(N-methylimidazolium)-benzyl- o
2 oxyl]-2,2,6,6-tetramethyl piperidine-1- 6.58
oxyl chloride (TEMPO-1) o
\
o)
N
4-[2-(N-methyl imidazolium) acetoxy]-
3 2,2,6,6-tetramethylpiperidine-1-oxyl 00 _ 3.19
chloride (MIMAcO-TEMPO) \E ¢
0
Ly
\
4 1-butyl-3-methylimidazolium chloride kL,g 2 6.87
Ly
\
00 _
3-(2-methoxy-2-oxoethyl)-1-methyl-1H- \E cl
5 . . . N 2.81
imidazol-3-ium chloride @
N
\

* pH of a solution was measured 1 hour after dissolving 0.1 M solute in DI water (pH of blank DI water is 7.03)




Table S2. Gibbs free energy changes (4G) for each OH-TEMPO adduct formation reaction
with three different reaction sites (Sites I, I, and III) on both reduced and oxidized forms of
4-OH-TEMPO and MIMAcO-TEMPO, and [(OH—MIMAcO)-TEMPO"]:

AG = Gadduct - GOH - GTEMPO’ where Gadduct, GOH - and GTEMPO are Gibbs free energy of
adduct for each formation reaction, OH-, and corresponding TEMPO species. *for AG by
interaction of OH~ with MIMACcO functional group of MIMAcO-TEMPO™ to form [(OH~
—MIMACcO)-TEMPO"]; this adduct is more stabilized in its triplet state, while the other
possible adducts prefer their singlet states.

TEMPO moiety MIMACcO functional
(nitroxyl radical or oxoammonium) group
AG [eV]

Site-I Site-I1 Site-III
4-OH-TEMPO- 0.300 0.327 -
4-OH-TEMPO* 0.176 -0.736 -

MIMAcO-TEMPO= 3.109 2.387 -0.055
MIMAcO-TEMPO* -0.124 -0.829 -1.194
[(OH —MIMAcO)- 0.299 0.975 -

TEMPO"]




Table S3. Parameters for voltammetric simulations of 4-OH-TEMPO and MIMAcO-TEMPO,
shown in Figure 3a and Figure S14.

4-OH-TEMPO MIMAcO-TEMPO
E°
[V vs. Ag/AgCl] 0.60 0.64
K -3 -2
[cm/s] 7.11 x 10 1.34 x 10
a 0.48 0.48
D -6 -6
[ em?/s] 8.29 x 10 6.35x 10
R [ohm] 17 19
RC constant [psec] 9.8 12.1

C[F] 5.76 x 10~/ 6.38x 1077




Table S4. Battery performance comparison of AORFBs using TEMPO-based molecules as

catholyte.
. Current
Cell Conceﬂl\l/:]ra tion Density No. of Capacity
Catholyte Anolyte Voltage [ : Fade Rate  Ref.
V] (Catholyte/ A/ 2 Cycles [%/Cycle]
Anolyte) m ]cm 0/Cy
0.1/0.1 40 100 N.A.
4-OH-TEMP .
0 0 MV 1.25 0.5/0.5 60 100 >0.11 [12]
0.25/0.25 20 ~550 N.A.
0.1/0.1 20 400 N.A
N,-TEMPO NPT,V
2 (NPT, 135 0.5/0.5 60 400 N.A [13]
1.0/1.0 60 400 0.025
0.05/0.05 30 400 0.06
4-CO,Na-TEMPO (SPr),V 1.19 0.4/0.4 30 50 0.20 [14]
1.0/ 1.0 30 20 1.65
TEMPO-SO3K (NPr),VBr 11‘1439’ 0.5/0.25 20 1200 2.33 [15]
NMe_TEMPO (NPP),TTZ] 144 0.2/0.1 40 300 0.03 [16]
0.5/0.25 60 50 0.06
0.2/0.1 40 500 0.04
Pyr-TEMPO [PyrPVICl, 157 0.5/0.25 40 1000 0.05 [17]
1.0/0.5 40 250 0.2
0.1/0.1 40 1000 0.007
TMAP-TEMPO BTMAP -Vi 1.19 0.5/0.5 100 200 0.025 [18]
15/15 100 250 0.015
TPABPV)CI . 0.1/0.1 60 2000 0.0022
( y)Cly BTMAP -Vi 1.299 15713 %0 100 0.00 [19]
TMAAcNH-TEMPO ~ (NPT),V 1.22 0.170.1 20 1500 00033 2
0.5/0.5 50 1000 0.014
Me_ (NPr),V 1.38 0.5/0.5 60 500 0.005 [21]
NMe_TEMPO
NMe_TEMPO Mv 1.45 0.5/0.5 60 500 0.018 [21]
This
MIMAcO-TEMPO  BTMAP -Vi 1.18 0.1/0.1 40 1000 0.0117 Wor

k




Table S5. Detailed composition of anolyte and catholyte in MIMAcO-TEMPO/BTMAP-Vi
AORFB for concentration-dependent charge-discharge test.

Concentration of Electrolyte composition (electrolyte volume)

MIMAcO-TEMPO [M]

Catholyte Anolyte
o1 0.1M MIMAcO-TEMPO + 1.0M 0.1M BTMAP-Vi + 1.0M NaCl
: NaCl (40ml) (80ml)
0.5 0.5M MIMACO-TEMPO + 1.0M 0.4M BTMAP-Vi + 1.0M NaCl
) NaCl (40ml) (100ml)
L0 1.0M MIMAcO-TEMPO + 1.0M 0.7M BTMAP-Vi + 1.0M NaCl
. NaCl (40ml) (115ml)
20 2.0M MIMAcO-TEMPO + 0.5M 1.2M BTMAP-Vi + 0.5M NaCl
: NaCl (40ml) (135ml)
2.5 2.5M MIMAcO-TEMPO (40ml) 1.2M BTMAP-Vi + 0.5M NaCl

(135ml)
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