Supplementary Information

Design of Potassiophilic 3D Conductive Scaffold Potassium Anode (3D-CTZ@K ) with Dendrite-Free and High Energy-Power Density in Potassium Metal Batteries

Dong-Ting Zhang, Mao-Cheng Liu, Min-Peng Li, Hao Chen, Chen-Yang Li, Yu-Xia Hu, Ling-Bin Kong, Xiang-Yun Zhang, Bing-Ni Gu, Ming-Jin Liu, Kun Zhao, Jun-Qiang Ren, Zi-Zhou Yuan, Yu-Lun Chueh

aState Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China

bSchool of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China

cDepartment of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

dCollege of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan.

eFrontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.

fDepartment of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.

* E-mail: liumc@lut.edu.cn, yuanzz@lut.edu.cn, and ylchueh@mx.nthu.edu.tw
Figure S1 a, b) TEM images of TZ hybrids.
Figure S2 a) The high-resolution XPS spectra of Zn 2p in TZ hybrids. High-resolution XPS spectra of Ti$_3$C$_2$ and TZ hybrids, showing the fitting curves at b) Ti 2p, c) C 1s, and d) O 1s peaks, respectively.
Figure S3 \( \text{N}_2 \) adsorption-desorption isotherm of 3D-CF, TZ, ZnO, and Ti\(_3\)C\(_2\).

The SSA of 3D-CF, TZ, ZnO, and Ti\(_3\)C\(_2\) are 183.4, 37.4, 20.3, and 40.9 m\(^2\) g\(^{-1}\), respectively.

Compared with 3D-CF, the decreased SSA of 3D-CTZ is ascribed to the adhered of TZ hybrids, which take up some of the empty space in the 3D-CF.
Figure S4 The macroscopic digital photo of 3D-CTZ scaffold (a) without the stress, (b) under the compressive stress, and (c) after removing the compressive stress.

It can be observed in the macroscopic digital photos that the 3D-CTZ scaffold undergoes deformation under pressure, and then recovers deformation and maintains the same after removing the compressive stress. The result proved that 3D-CTZ scaffold possesses the outstanding mechanical property, which is favorable to support the infusion of the molten K metal and buffer huge stress-strain during the K plating/stripping processes.
Figure S5 (a-c) Top-view SEM images of 3D-CTZ@K after 200 th cycles at the current density of 0.5 mA cm\(^{-2}\) and the cycling capacity of 0.5 mAh cm\(^{-2}\).

Figure S6 Electrochemical performance of K//3D-CF, K//3D-CF@Ti\(_3\)C\(_2\), and K//3D-CF@ZnO half batteries. (a) Galvanostatic plating and stripping profiles for half-batteries at the current density of 1.0 mA cm\(^{-2}\). (b) Coulombic efficiency.
Figure S7. Galvanostatic cycle of 3D-CF@ZnO@K//3D-CF@ZnO@K, 3D-CF@Ti$_3$C$_2$@K//3D-CF@Ti$_3$C$_2$@K, and 3D-CF@K//3D-CF@K symmetrical batteries at the current density of 0.5 mA cm$^{-2}$ with the capacity of 0.5 mAh cm$^{-2}$ per cycle.

Figure S8. Galvanostatic cycles of 3D-CTZ@K//3D-CTZ@K batteries. The current density was fixed at 1.0 mA cm$^{-2}$ with the capacity of 1.0 mAh cm$^{-2}$ per cycle.
Figure S9. Nyquist plots of K//K battery after different cycles at 1.0 mA cm$^{-2}$ to 1.0 mAh cm$^{-2}$ per cycle.