Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Design of Potassiophilic 3D Conductive Scaffold Potassium Anode (3D-CTZ@K) with

Dendrite-Free and High Energy-Power Density in Potassium Metal Batteries

Dong-Ting Zhang^{a, b}, Mao-Cheng Liu^{a, b*}, Min-Peng Li^{a, b}, Hao Chen^{a, b}, Chen-Yang Li^{a, b}, Yu-

Xia Hu^{*a*, *b*}, Ling-Bin Kong^{*a*, *b*}, Xiang-Yun Zhang^{*a*, *b*}, Bing-Ni Gu^{*c*, *d*, *e*, *f*}, Ming-Jin Liu^{*c*, *d*, *e*, *f*}, Kun

Zhao^{a, b}, Jun-Qiang Ren^{a, b}, Zi-Zhou Yuan^{a, b*}, Yu-Lun Chueh^{c, d, e, f*}

^aState Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China

^bSchool of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China

^cDepartment of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

^dColleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan.

^eFrontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.

^fDepartment of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.

* E-mail: liumc@lut.edu.cn, yuanzz@lut.edu.cn, and ylchueh@mx.nthu.edu.tw

Figure S1 a, b) TEM images of TZ hybrids.

Figure S2 a) The high-resolution XPS spectra of Zn 2p in TZ hybrids. High-resolution XPS spectra of Ti_3C_2 and TZ hybrids, showing the fitting curves at b) Ti 2p, c) C 1s, and d) O 1s peaks, respectively.

Figure S3 N_2 adsorption-desorption isotherm of 3D-CF, TZ, ZnO, and Ti₃C₂.

The SSA of 3D-CF, TZ, ZnO, and Ti_3C_2 are 183.4, 37.4, 20.3, and 40.9 m² g⁻¹, respectively. Compared with 3D-CF, the decreased SSA of 3D-CTZ is ascribed to the adhered of TZ hybrids, which take up some of the empty space in the 3D-CF.

Figure S4 The macroscopic digital photo of 3D-CTZ scaffold (a) without the stress, (b) under the compressive stress, and (c) after removing the compressive stress.

It can be observed in the macroscopic digital photos that the 3D-CTZ scaffold undergoes deformation under pressure, and then recovers deformation and maintains the same after removing the compressive stress. The result proved that 3D-CTZ scaffold possesses the outstanding mechanical property, which is favorable to support the infusion of the molten K metal and buffer huge stress-strain during the K plating/stripping processes.

Figure S5 (a-c) Top-view SEM images of 3D-CTZ@K after 200 th cycles at the current density of 0.5 mA cm⁻² and the cycling capacity of 0.5 mAh cm⁻².

Figure S6 Electrochemical performance of K//3D-CF, K//3D-CF@Ti₃C₂, and K//3D-CF@ZnO half batteries. (a) Galvanostatic plating and stripping profiles for half-batteries at the current density of 1.0 mA cm⁻². (b) Coulombic efficiency.

CF@Ti₃C₂@K//3D-CF@Ti₃C₂@K, and 3D-CF@K//3D-CF@K symmetrical batteries at the current density of 0.5 mA cm⁻² with the capacity of 0.5 mAh cm⁻² per cycle.

Figure S8. Galvanostatic cycles of 3D-CTZ@K//3D-CTZ@K batteries. The current density was fixed at 1.0 mA cm⁻² with the capacity of 1.0 mAh cm⁻² per cycle.

Figure S9. Nyquist plots of K//K battery after different cycles at 1.0 mA cm⁻² to 1.0 mAh cm⁻²

per cycle.