Tuning of Cationic Distribution in "Partially Inversed" Cobalt Ferrite Spinel Nanocubes via Nitrogen-doped Graphene Oxide Support for Enhanced Bifunctional Oxygen Electrocatalysis

Shwetambara Jha¹, Priya Jain¹, Regina Palkovits[≠], Pravin Popinand Ingole¹*

¹Department of Chemistry, IIT Delhi, Hauz Khas, New Delhi-110016, India. $\neq A$ chair of Heterogeneous Catalysis und technical chemistry, RWTH University, Aachen, 52074, Germany.

Fig. SI-1. TEM images for $CoFe_2O_4$ with scale bar (a) 50 nm and (b) 20 nm and (c) size distribution histogram of $CoFe_2O_4$.

Fig. SI-2. TEM and HRTEM images of (a, b) GO, and (c, d) NGO. The number in the white background depicts the fringe spacings.

Fig. SI-3. TEM Images for (a) Co_3O_4/NGO and (b) Fe_3O_4/NGO .

Fig. SI-4. (a) Overlay of XRD patterns of as-synthesized Co_3O_4/NGO , Fe_3O_4/NGO and NGO and (b) the XRD pattern of GO and NGO.

Fig. SI-5. Zoomed and deconvoluted view of Raman spectra of as synthesized $CoFe_2O_4$, $CoFe_2O_4/NGO$, NGO and GO.

Fig. SI-6. (a)Survey XPS spectra of the samples showing the presence of Co, Fe, N, O, and C, (b) and (b) zoom view of image (a) in the range of (350 eV -450 eV).

Fig. SI-7. XPS spectra of (a) N 1s, (b) C 1s, and (c) O 1s for CoF₂O₄ and CoFe₂O₄/NGO.

Table SI-1. Summary of the composition data for the catalysts on the basis of XPS analysis.

XPS	CoFe ₂ O ₄		CoFe ₂ O ₄ /NGO		
peak/Sample	O _h	T_{h}	O _h	T _h	
Co 2p _{3/2} (eV)	779.84	781.1	777.62	779.4	
Co 2p _{1/2} (eV)	796.8	794.95	793	794.42	
Occupancy (%)	59	41	71	29	
Fe 2p _{3/2} (eV)	708.94	711.41	707.85	709.79	
Fe 2p _{1/2} (eV)	722.24	723.74	718.16	722.96	
Occupancy (%)	49	51	45	55	

N 1s (eV)	V)		398.13	399.17	

<i>Table SI-2.</i>	<i>Composition</i>	data for the	catalysts based	on XANES analysis.
	1		~	2

Samples	Co K edge	Fe K edge	Fe K edge	Reduced	% Occupancy of Fe	
	$E_0 (eV)$	$E_0(eV)$	Centroid (eV)	X^2	Oh	Th
CoFe ₂ O ₄	7709	7120	7114.65	0.0006	47	53
CoFe ₂ O ₄ /NGO	7714	7122	7117.97	0.0008	41	59

Fig. SI-8. (a) CV curve in N2 and O2 saturated 0.1 M KOH for NGO (b) comparison of mass normalized LSV at 1600 rpm for as synthesized materials. (c) LSV comparison of the crafted samples at 1600 rpm in O_2 saturated 0.1 M KOH and (d) Mass transfer corrected Tafel slopes for as synthesized materials.

Fig. SI-9. LSV curves at different rotation rates for a) $CoFe_2O_4$ and b) NGO.

Fig. SI-10. LSV of $CoFe_2O_4/NGO$ in O_2 saturated 0.1 M KOH from 100 to 1600 rpm disk current and ring current.

Fig. SI-11. Effect of methanol addition on (a) 'n' and (b) '% H_2O_2 ' generated during ORR for $CoFe_2O_4/NGO$ in O_2 saturated 0.1 M KOH. (c) Methanol tolerance tests via i-t curve, and (d) ORR stability test for 8 h via chronoamperometry at 0.82 V vs RHE.

Fig. SI-12. The CVs at different scan rates for the calculation of Cdl and comparison of Cdl for the crafted materials.

Fig. SI-13. The comparison of ECSA normalized LSV for the as synthesized materials for OER activity comparison in 1 M KOH at 10 mV/s.

Fig. SI-14. The comparison of a) PXRD pattern, b) Raman spectra, c) RDE polarization curves for ORR in 0.1 M KOH, and d) LSV curves for OER in 1 M KOH for individual components as well as physical mixture of CoFe₂O₄ and NGO with CoFe₂O₄/NGO.

Fig. SI-15: Comparison of catalytic performance of materials synthesized in 12- and 18-hours hydrothermal treatment (a) cyclic voltammetry experiment in O_2 (solid line) N_2 (dotted line) and (b) LSV of as-synthesized catalyst.

Fig. SI-16. The bifunctional oxygen electrocatalytic activity in terms of ΔE for CoFe₂O₄/NGO.

Fig. SI-17. Analysis of catalyst $CoFe_2O_4/NGO$ in O_2 saturated 0.1M KOH before and after 8 hours chrono-amperometry runs (a) XRD, (b) XPS survey spectra and (c) deconvoluted spectra of Co 2p.

Fig. SI-18. HR TEM images at scale bar (a) 50 nm and (b) 20 nm) for $CoFe_2O_4/NGO$ after 8 hours chrono-amperometry runs in O_2 saturated 0.1 M KOH electrolyte.