Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

## **Supporting Information**

## S-Doped $Ti_3C_2F_2$ MXene as an Ideal Sulfur Cathode Host for

## **High-Performance Rechargeable Lithium-Sulfur Batteries**

Hao Yuan, Jing Yang, and Yong Wei Zhang\*

Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A\*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore

\*Corresponding Author zhangyw@ihpc.a-star.edu.sg



Fig S1. AIMD snapshots of  $Li_2S$  on  $Ti_3C_2(OH)_2$  at 0 and 10 ps.

Table S1.  $Li_2S$  diffusion and decomposition barriers (units: eV) on MXenes.

|                             | $Ti_3C_2F_2$ | Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub> | $Ti_3C_2S_2$ |
|-----------------------------|--------------|-----------------------------------------------|--------------|
| Li <sub>2</sub> S diffusion | 0.1          | 1.15                                          | 1.38         |
| Li <sub>2</sub> S           |              |                                               |              |
| decomposition               | 1.35         | 0.47                                          | 0.34         |



Fig S2. Initial structures with a high concentration  $Li_2S$  on a)  $Ti_3C_2F_2$ , b)  $Ti_3C_2O_2$  and c)  $Ti_3C_2S_2$ .



Fig S3. Snapshots of  $Li_2S$  on O@Ti<sub>3</sub>C<sub>2</sub>F<sub>2</sub>.



Fig S4. Calculated MSD of Li and S on a)  $O@Ti_3C_2F_2$  and b)  $S@Ti_3C_2F_2$  as a function of simulation time.



Fig S5. Adsorption configurations of polysulfides on  $Ti_3C_2F_2$ , O@ $Ti_3C_2F_2$  and S@ $Ti_3C_2F_2$ .



Fig S6. Density of states of a)  $Ti_3C_2F_2$ , b) O@Ti\_3C\_2F\_2 and c) S@Ti\_3C\_2F\_2.



Fig S7. The adsorption configurations and adsorption energies of DOL and DME on S@  $Ti_3C_2F_2$  are shown in a) and b), respectively.