Electronic supplementary information for

Engineering electronic structure of FeP with rare earth elements to promote the electrocatalytic hydrogen evolution performance

Wei Gao^{a,#}, Yujie Wu^{a,#}, Xinhao Wan^a, Jie Gao^b, Dan Wen^{a,*}

^a State Key Laboratory of Solidification Processing, School of Materials Science and Engineering,

Northwestern Polytechnical University, Xi'an, 710072, P. R. China

^b School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China

[#] W. Gao and Y. Wu contributed equally to this work.

*Corresponding author should be addressed to D. Wen (dan.wen@nwpu.edu.cn)

Supplementary figures

Figure s1. SEM images for FeP/CC sample with different magnifications.

Figure s2. SEM and corresponding element mapping images for Y-FeP/CC.

Figure s3. SEM and corresponding element mapping images for La-FeP/CC.

Figure s4. SEM and corresponding element mapping images for Ce-FeP/CC.

Figure s5. SEM and corresponding element mapping images for Sm-FeP/CC.

Figure s6. SEM and corresponding element mapping images for Gd-FeP/CC.

Figure s7. EDS spectra for RE-FeP and FeP samples.

Figure s8. (a) Full spectra and (b-f) high-resolution XPS spectra for various RE-CeP samples.

Figure s9. Polarization curves (with iR corrections) of Ce-FeP/CC with different Ce amounts and FeP/CC for HER in acid solution.

Figure s10. CV curves in $0.5 \text{ M H}_2\text{SO}_4$ for (a) FeP, (b) Y-FeP, (c) La-FeP, (d) Ce-FeP, (e) Sm-FeP, and (f) Gd-FeP with different scan rates.

Figure s11. Normalized polarization curves based on ECSA results for FeP and RE-FeP samples in acidic solution.

Figure s12. (a) Polarization curves, and corresponding (b) Tafel slopes for various RE-FeP in 1 M KOH solution.

Figure s13. Normalized polarization curves based on ECSA results for FeP and RE-FeP samples in alkaline solution.

Figure s14. Stability test of Ce-FeP/CC and FeP/CC under the overpotential of 204 mV without iR corrections in 1 M KOH solution.

Sample	Concentration of Fe / umol/mL	Concentration of RE / umol/mL	Molar ratio of RE/(Fe+ RE)
Y-FeP	1.38	0.09	6.1%
La-FeP	1.0	0.076	7.1%
Ce-FeP	1.78	0.165	8.5%
Sm-FeP	1.24	0.125	9.2%
Gd-FeP	1.27	0.125	8.6%

Table s1. ICP-AES result for RE-FeP to calculate the molar ratio of RE to Fe.

Catalysts	Electrolyte	Overpotential	Reference	
		@10mA cm ⁻² /mV		
Ce-FeP/CC	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	51	this work	
Ce-FeP/CC	1 M KOH	100	this work	
FeP	0.5 M H ₂ SO ₄	79	Appl. Catal. B-Environ., 2020,	
			260, 118156	
FeP	1 M KOH	95	Appl. Catal. B-Environ., 2020,	
			260, 118156	
FeP@NPC	0.5 M H ₂ SO ₄	75	Appl. Surf. Sci., 2022, 597,	
			153662	
FeP@NPC	1 M KOH	109	Appl. Surf. Sci., 2022, 597,	
			153662	
Carbon-shell-	0.5 M H ₂ SO ₄	71	J. Am. Chem. Soc., 2017, 139,	
coated FeP			6669	
FeP/C nanosheets	0.5 M H ₂ SO ₄	51.1	Adv. Sci., 2019, 6, 1801490	
FeP@PPy/CTs	0.5 M H ₂ SO ₄	103.1	Chem. Eng. J., 2022, 433, 133643	
Ni-doped FeP/C	0.5 M H ₂ SO ₄	72	Sci. Adv., 2019, 5, eaav6009	
Ni-doped FeP/C	1 M KOH	95	Sci. Adv., 2019, 5, eaav6009	
MoO ₂ -FeP@C	1 M KOH	103	Adv. Mater., 2020, 32, 2000455	
NF@NiFe	1 M KOH	154	ACS Appl. Mater. Interfaces,	
LDH/CeO _x			2018, 10, 35145	
CeFeCoP/NF	1 M KOH	97	J. Solid State Chem., 2022, 314,	
			123434	
Fe _x Ni _y /CeO ₂ /NC 1 M KOH		240	Inorg. Chem. Front., 2020, 7, 470	
Er-doped CoP/CC 0.5 M H ₂ SO ₄		52	J. Mater. Chem. A, 2019, 7, 5769	
Ce-doped NiFe-	1 M KOH	147	Sustainable Energy Fuels, 2020,	
LDH			4, 312	

Table s2. Comparison in HER activity for various Fe-based electrocatalysts.

Table s3. Front view, overlook view, and side view for optimized structures of FeP-H and RE-FeP-H structure.

Sample	Front view	Overlook view	Side view	_
FeP				_
Y-FeP				
La-FeP				
Ce-FeP				
Sm-FeP				SFe P H
Gd-FeP				 Y La Ce Sm Gd