

Figure S1. XRD patterns of the previous PBSCF-a phase and the hybrid electrode. The previous PBSCF-a is a single-phase double perovskite, which was synthesized by a wet chemistry method and sintered at 900 °C for 5 hours. The hybrid electrode consists of two phases, PBSCF-b and BSC, which was prepared by the same wet chemistry method and sintered at 750-770 °C.

Figure S2. (A) TEM images of the hybrid electrode. (B) SAED patterns indicate the hybrid electrode is composed of the PBSCF-b phase and BSC phase. (C) HR-TEM image of the hybrid electrode grain and the zoomed-in areas: (D) and (E). The lattice fringes with the d-spacing of 0.271 nm, correspond to the (102) planes of the new PBSCF-b phase.

Figure S3. (A) Additional TEM images of the hybrid electrode. (B) Additional SAED patterns show the hybrid electrode is composed of a new PBSCF-b phase and the BSC phase. (C) EDS mapping images of the hybrid electrode show the BSC phase mainly contains Ba, Sr, Co, and O elements. (D) HR-TEM image of the hybrid electrode grain and the zoomed-in areas. (E) HR-TEM image shows lattice planes with d-spacing of 0.380 nm, corresponding to the (002) planes of the new PBSCF-b phase.

Figure S4. (A) TEM image of the hybrid electrode. (B) SAED patterns show the lattices with the d-spacings of 0.382 nm, 0.155 nm, 0.190 nm, 0.270 nm, and 0.219 nm, corresponding to the (002), (212/114), (004), (102/110), and (112) planes of PBSCF-b, respectively. And those with the d-spacing of 0.329 nm and 0.240 nm correspond to the (101) and (200) planes of BSC, respectively. (C) EDS mapping images of the hybrid electrode confirm that it is a composite of PBSCF-b and BSC phases.

Figure S5. ECR experimental results and the fitted results for PBSCF-b coated with BSC at 550 °C, 600 °C, 650 °C, and 700 °C after changing the oxygen partial pressure from 2 vol.% (490 sccm Ar + 10 sccm O_2) to 20 vol.% (400 sccm Ar + 100 sccm O_2).

Figure S6. ECR experimental results and the fitted results for the previous PBSCF-a at 625 °C, 650 °C, 675 °C, and 700 °C after changing the oxygen partial pressure from 2 vol.% (490 sccm Ar + 10 sccm O_2) to 20 vol.% (400 sccm Ar + 100 sccm O_2).

Figure S7. Photos of a representative fuel electrode-supported SOEC fabricated in this work to evaluate the oxygen electrodes. The oxygen electrode effective area is 0.5 cm².

Figure S8. Representative SEM images of SOECs studied in this work, which are highly reproducible, highly uniform, and defect-free, and have dense electrolytes (thickness of electrolyte = $\sim 8 \mu m$).

Figure S9. SEM images of the SOEC with PBSCF-b+BSC hybrid electrode after performance evaluation in steam electrolysis mode. No cracking or electrolyte-electrode delamination were observed.

Figure S10. EIS spectra collected at an applied voltage of 1.3 V and an operating temperature ranging from 550 to 750 °C for SOEC with the hybrid electrode.

				1
			Current	
Half-cell	Oxygen electrode	Temperature	densities at	Literature
configuration	materials	(°C)	1.3 V (A	Entorationo
			cm ⁻²)	
		750	4.4	
		700	2.3	
Ni-YSZ YSZ	Hybrid electrode	650	1.4	This work
		600	0.9	
		550	0.46	
		800	4.08	
Ni-	SSC-SDC	750	3.13	. 1
YSZ YSZ GDC		700	1.9	
		650	1.1	
		800	3	
Ni-		750	2.3	
	STFC	700	1.5	2
102 102 000		650	1	
		600	0.6	
	SSNC	800	0.7	3
	00110	750	0.45	
	SSZ-NdaOa/NNO	800	2.05	
		750	1.62	4
430611321332	33 2- Nu ₂ 0 ₃ /NNO	700	1.06	
		650	0.6	
		750	2.1	
Ni-YSZ Ni-		700	1.45	5
SSZ SSZ SNDC	FD3CF-GDC	650	0.94	
		600	0.51	
		700	1.32	
Ni-YSZ YSZ	LSM-DYSB	650	0.9	6
		Ars (°C) 1.3 ° 750 4.4 700 2.3 650 1.4 600 0.3 550 0.4 650 1.4 650 1.4 650 1.4 750 3.1 750 3.1 750 3.1 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 1.4 650 0.4 800 2.0 750 1.6 750 1.6 750 1.4 650 0.4 650 0.4 750 1.3 750 1.3 750 1.3 <tr< td=""><td>0.47</td><td></td></tr<>	0.47	
NI:		750	1.37	
	LSCF-SNDC	700	0.97	7
152115215INDC		650	0.58	
		800	2.75	
Ni-		750	1.7	8
YSZ YSZ GDC	LSCF-GDC	700	1.25	
		650	0.6	
		800	1.52	
		750	0.97	
NI-YSZ YSZ	LSM-YSB	700	0.7	. J
		650	0.46	
Ni-	STFC-PrOx	800	4.25	10
YSZIYSZIGDC		750	3.6	10

 Table S1. Comparisons YSZ electrolyte-based SOEC performance.

		700	2.9	
		650	2.25	
		600	1.25	
		550	0.5	
Ni- YSZ YSZ GDC	PBFZr-GDC	700	2.14	11
Ni- YSZ YSZ GDC	LSCF-GDC	750	2.1	12
Ni- YSZ YSZ GDC	PBNF0.1	750	0.65	13
Ni-YSZ YSZ	PBSM3	750	2.75	14
		700	1.85	17
Ni-YSZ YSZ	LSM-YSZ	700	0.40	15
Ni-	LSCF	700	0.82	16
YSZ YSZ GDC				
Ni-YSZ YSZ	LSCF-YSZ	750	0.91	17
Ni-	BSCF-SDC	750	0.23	18
YSZ YSZ SDC				
Ni-YSZ YSZ	PNO	700	0.28	19
Ni- YSZ YSZ GDC	LSCF-GDC	750	0.34	20
Ni- YSZ YSZ GDC	LSCF-GDC	750	0.77	21
Ni-YSZ ScSZ	Mn1.3Co1.3Cu0.4O4- ScSZ	750	1.4	22
Ni- YSZ YSZ GDC	LSFN-GDC	750	0.53	23
Ni- YSZ YSZ GDC	BCO-PBCC	750	1.36	24

	Ovurgen electrode	Dook nower density	
Hall-Cell	Oxygen electrode	Peak power density	Literature
configuration	materials	_ at 750 °C (W cm⁻²)	
Ni-YSZ YSZ	Hybrid electrode	2.4	This work
Ni-YSZ YSZ GDC	STFC	1.75	2
Ni-YSZ YSZ GDC	STFC-PrO _x	3	10
Ni-YSZ YSZ GDC	LSCF-GDC-PrO _x	2	25
Ni-YSZ YSZ	LSCF-GDC	1.6	26
Ni-YSZ YSZ GDC	LSF-GDC-Pr ₆ O ₁₁	1.57	27
Ni-YSZ YSZ GDC	PBFZr-GDC	1.9	11
Ni-YSZ YSZ GDC	PBCC-GDC	1.74	28
Ni-YSZ YSZ	SCP-GDC	1.4	29
Ni-YSZ YSZ	PBSCF-	1.37	29
-	GDC		
Ni-YSZ YSZ	MCO-GDC	0.7	30
Ni-YSZ YSZ	CMO-SDC	0.64	31
Ni-YSZ YSZ SDC	BCFN/BCO-LSCF	1.4	25
Ni-YSZ YSZ GDC	BSNM-SDC-Ag	1.3	32
Ni-YSZ YSZ GDC	SSC-SDC	2.44	1
Ni-YSZ YSZ ESB	LSM-ESB	1.75	33
Ni-YSZ YSZ GDC	NBCCF@GDC	1	34

Table S2. Performance comparison of this work and other state-of-the-art YSZ anodesupported hydrogen-fueled SOFCs reported recently.

Sample	Phase	Space group	a, b, c (Å)	α, β, γ (°)	Wt. frac. (%)	Chi	wR _p (%)	R _p (%)	d-spacing
New	New PBSCF-b	Tetragonal; P4/mmm	etragonal; 3.88, 90, 3.88, 90, 24/mmm 7.74 90	89.5			11.04	0.195 nm, (200); 0.387 nm, (002); 0.273 nm, (102); 0.158 nm, (212);	
PBSCF- b+BSC	BSC	Hexagonal; P63/mmc	5.58, 5.58, 4.63	90, 90, 120	10.5	1.970	13.00	11.04	0.279 nm, (110); 0.167 nm, (202); 0.169 nm, (211); 0.230 nm, (002);

Table S3. XRD refinement results of the hybrid electrode material.

Table S4. Comparison in peak power densities at various temperature using differentsingle cell configuration fueled by propane.

Single cell configuration (fuel electrode electrolyte oxygen electrode)	Temperature (°C)	Peak power density (W cm ⁻²)	Literature
	750	2.6	
	700	1.7	
Ni-YSZ YSZ Hybrid electrode	650	0.95	This work
	600	0.54	
	550	0.26	
RP-SFM-SDC LDC LSGM LSCF-	800	0.7	35
SDC	750	0.35	
	800	0.5	
	750	0.38	36
GDC/LDC/LSGM/LSCF-GDC	700	0.18	
L-PBMCO LDC LSGM NBSCF- GDC	800	0.33	37
RP-PSFN- CFA LDC LSGM BCFN	800	0.59	38
	800	0.75	
PBMO LDC LSGM NBSCF-GDC	750	0.3	39
	700	0.17	
NTO-Ni-YSZ YSZ LSM-YSZ	700	0.15	40
BaO/Ni-YSZ YSZ SDC-LSCF	750	0.9	41
Ru-CeO2 PSZ Ni-	750	0.48	42
YSZ YSZ LSCF-GDC	700	0.385	
	800	0.6	43
F3CFN-C0-F6L3GMIBCFN	750	0.32	
RP-PSFR-FRA-	800	0.5	
GDC LSGM LSCF-GDC	750	0.25	44
	700	0.12	

Table S5. Crystal structure results obtained from TEM for the PBSCF-b phase

Mul	(h,k,l)	d* /	Θ _{Scatt}	Inten	Θ_{Bragg}	V _r	Vi	Ampli.	d /	LP	s
ti.		nm ⁻¹	1	s.	/	[V nm e]	[V nm e]	[V nm	nm	factor	
			Deg.		mRad			e]			
1	(0,0,0)	0.000	0.000		0.000	12.339	0.935	12.375			
2	(0,0,1)	1.310	0.189	1	1.642	-0.154	0.247	0.291	0.764	0.7636	1
4	(1,0,0)	2.558	0.368	301	3.208	4.917	0.479	4.940	0.391	0.3909	1
2	(0,0,2)	2.619	0.377	561	3.284	9.623	0.699	9.649	0.382	0.3818	4
8	(1,0,1)	2.874	0.413	489	3.604	4.695	0.471	4.719	0.348	0.348	2
4	(1,1,0)	3.617	0.520	1	4.536	0.249	0.256	0.357	0.276	0.2764	2
8	(1,0,2)	3.661	0.527	300	4.591	4.146	0.453	4.170	0.273	0.2731	5
8	(1,1,1)	3.847	0.553	1000	4.824	7.779	0.642	7.806	0.260	0.2599	3
2	(0,0,3)	3.929	0.565	1	4.927	0.266	0.255	0.368	0.255	0.2545	9
8	(1,1,2)	4.466	0.642	2	5.600	0.274	0.252	0.372	0.224	0.2239	6
8	(1,0,3)	4.688	0.674	167	5.879	3.497	0.430	3.523	0.213	0.2133	10
4	(2,0,0)	5.116	0.736	244	6.415	6.259	0.593	6.287	0.195	0.1955	4
2	(0,0,4)	5.238	0.753	114	6.569	6.135	0.589	6.163	0.191	0.1909	16
8	(2,0,1)	5.281	0.759	1	6.622	0.252	0.247	0.353	0.189	0.1894	5
8	(1,1,3)	5.341	0.768	434	6.697	6.034	0.585	6.062	0.187	0.1872	11
8	(2,1,0)	5.720	0.822	98	7.172	2.955	0.408	2.983	0.175	0.1748	5
8	(2,0,2)	5.747	0.826	355	7.207	5.655	0.571	5.684	0.174	0.174	8
8	(1,0,4)	5.830	0.838	93	7.310	2.904	0.405	2.932	0.172	0.1715	17
16	(2,1,1)	5.868	0.844	183	7.358	2.886	0.404	2.915	0.170	0.1704	6
16	(2,1,2)	6.291	0.904	150	7.889	2.700	0.395	2.729	0.159	0.159	9
8	(1,1,4)	6.366	0.915	1	7.983	0.197	0.242	0.312	0.157	0.1571	18
8	(2,0,3)	6.450	0.927	1	8.089	0.192	0.241	0.309	0.155	0.155	13
2	(0,0,5)	6.548	0.941	0	8.211	0.187	0.241	0.305	0.153	0.1527	25
16	(2,1,3)	6.939	0.998	111	8.702	2.444	0.387	2.474	0.144	0.1441	14
8	(1,0,5)	7.030	1.011	54	8.816	2.410	0.385	2.441	0.142	0.1422	26

Multi	(h,k,l)	d* /	Θ _{Scatt}	Intens	Θ _{Bragg}	V _r	V _i	Ampli.	d/	LP	s
•			Deg.	•	/ mRad					lacioi	
1	(0,0,0	0.000	0.00		0.000	28.782	2.090	28.858			
6	(1,0,0	2.084	0.30 0	168	2.613	4.877	0.693	4.926	0.48 0	0.480	1
6	(1,1,0	3.609	0.51 9	69	4.525	4.112	0.659	4.165	0.27 7	0.277 1	2
6	(2,0,0	4.167	0.59 9	1000	5.225	16.942	1.342	16.995	0.24 0	0.240	4
2	(0,0,2	4.232	0.60 9	321	5.307	16.749	1.337	16.805	0.23 6	0.236 3	4
12	(1,0,2	4.717	0.67 8	77	5.915	3.482	0.631	3.539	0.21 2	0.212	5
12	(2,1,0	5.513	0.79 3	51	6.913	3.060	0.610	3.121	0.18 1	0.181 4	5
12	(1,1,2	5.562	0.80 0	50	6.974	3.036	0.609	3.096	0.18 0	0.179 8	6
12	(2,0,2	5.939	0.85 4	783	7.448	12.636	1.197	12.692	0.16 8	0.168 4	8
6	(3,0,0	6.251	0.89 9	18	7.838	2.711	0.589	2.775	0.16 0	0.160	9
24	(2,1,2	6.950	0.99 9	51	8.715	2.419	0.579	2.488	0.14 4	0.143 9	9
6	(2,2,0	7.218	1.03 8	221	9.051	10.446	1.116	10.506	0.13 9	0.138 6	8
12	(3,1,0	7.512	1.08 0	20	9.420	2.210	0.564	2.281	0.13 3	0.133	1
12	(3,0,2	7.548	1.08	20	9.466	2.197	0.563	2.268	0.13	0.132	1
6	(4,0,0	8.334	1.19	139	10.45	8.905	1.043	8.966	0.12	0.120	1
12	(2,2,2	8.367	1.20 3	275	10.49 2	8.864	1.041	8.925	0.12	0.119 5	1
2	(0,0,4	8.464	1.21 7	44	10.61 4	8.743	1.034	8.804	0.11	0.118	1
24	(3,1,2	8.622	1.24 0	25	10.81	1.855	0.533	1.930	0.11	0.116	1
12	(1,0,4	8.716	1.25	12	10.93 0	1.828	0.531	1.904	0.11	0.114	1
12	(3,2,0	9.082	1.30	10	11.38 9	1.728	0.521	1.805	0.11	0.110	1
12	(1,1,4	9.201	1.32	10	11.53 8	1.697	0.517	1.774	0.10	0.108	1
12	(4,0,2	9.347	1.34	187	11.72	7.716	0.978	7.778	0.10	0.107	2
12	(2,0,4	9.434	1.35 6	181	11.83 0	7.622	0.973	7.684	0.10 6	0.106	2 0

Table S6. Crystal structure results obtained from TEM for the BSC phase.

12	(4,1,0	9.548	1.37	9	11.97	1.610	0.507	1.688	0.10	0.104	1
)		3		3				5	7	7
24	(3,2,2	10.02	1.44	14	12.56	1.500	0.494	1.580	0.10	0.099	1
)	0	0		5				0	8	7

Operation	Fuel humidity	Current density	Temperature	Degradation rate
Discharging	3% humidified H_2	0.8 A cm ⁻²	650 °C	2 mV/h
	3% humidified H_2	0.2 A cm ⁻²	550 °C	1 mV/h
	3% humidified C_3H_8	0.4 A cm ⁻²	600 °C	8 mV/h
Charging	40% humidified H_2	0.8 A cm ⁻²	650 °C	3 mV/h
	40% humidified H_2	3.0 A cm ⁻²	650 °C	8 mV/h
	40% humidified H ₂	5.0 A cm ⁻²	750 °C	4 mV/min

Table S7. Summary of the stability testing results of our SOECs with the hybrid electrode

References

- 1 H. Shimada, T. Yamaguchi, H. Kishimoto, H. Sumi, Y. Yamaguchi, K. Nomura and Y. Fujishiro, *Nat Commun*, 2019, **10**, 5432.
- 2 S.-L. Zhang, H. Wang, M. Y. Lu, A.-P. Zhang, L. V. Mogni, Q. Liu, C.-X. Li, C.-J. Li and S. A. Barnett, *Energy Environ. Sci.*, 2018, **11**, 1870–1879.
- 3 Z. Teng, Z. Xiao, G. Yang, L. Guo, X. Yang, R. Ran, W. Wang, W. Zhou and Z. Shao, *Materials Today Energy*, 2020, **17**, 100458.
- 4 T. Chen, Y. Zhou, M. Liu, C. Yuan, X. Ye, Z. Zhan and S. Wang, *Electrochemistry Communications*, 2015, **54**, 23–27.
- 5 H. Yu, H. Im and K. T. Lee, Adv Funct Materials, 2022, 2207725.
- 6 B.-H. Yun, K. J. Kim, D. W. Joh, M. S. Chae, J. J. Lee, D. Kim, S. Kang, D. Choi, S.-T. Hong and K. T. Lee, *J. Mater. Chem. A*, 2019, **7**, 20558–20566.
- 7 J. H. Park, C. H. Jung, K. J. Kim, D. Kim, H. R. Shin, J.-E. Hong and K. T. Lee, ACS Appl. Mater. Interfaces, 2021, **13**, 2496–2506.
- 8 J. Kim, S. Im, S. H. Oh, J. Y. Lee, K. J. Yoon, J.-W. Son, S. Yang, B.-K. Kim, J.-H. Lee, H.-W. Lee, J.-H. Lee and H.-I. Ji, *Sci. Adv.*, 2021, **7**, eabj8590.
- 9 J. Yan, Z. Zhao, L. Shang, D. Ou and M. Cheng, *Journal of Power Sources*, 2016, **319**, 124–130.
- 10 B.-K. Park, R. Scipioni, Q. Zhang, D. Cox, P. W. Voorhees and S. A. Barnett, *J. Mater. Chem. A*, 2020, **8**, 11687–11694.
- 11 G. Li, Y. Gou, X. Cheng, Z. Bai, R. Ren, C. Xu, J. Qiao, W. Sun, Z. Wang and K. Sun, *ACS Appl. Mater. Interfaces*, 2021, **13**, 34282–34291.
- 12 K. Joong Yoon, M. Biswas, H.-J. Kim, M. Park, J. Hong, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim and H.-W. Lee, *Nano Energy*, 2017, **36**, 9–20.
- 13 Z. Li, B. Yang, B. Qian, S. Wang, Y. Zheng, L. Ge and H. Chen, *Separation and Purification Technology*, 2023, **308**, 123002.
- 14 K. T. Bae, I. Jeong, D. Kim, H. Yu, H.-N. Im, A. Akromjon, C.-W. Lee and K. T. Lee, *Chemical Engineering Journal*, 2023, **461**, 142051.
- 15 T. Liu, Y. Wang, Y. Zhang, S. Fang, L. Lei, C. Ren and F. Chen, *Electrochemistry Communications*, 2015, **61**, 106–109.
- 16 D. Kim, J. W. Park, M. S. Chae, I. Jeong, J. H. Park, K. J. Kim, J. J. Lee, C. Jung, C.-W. Lee, S.-T. Hong and K. T. Lee, *J. Mater. Chem. A*, 2021, **9**, 5507–5521.
- 17 Y. Tan, A. Wang, L. Jia, D. Yan, B. Chi, J. Pu and J. Li, *International Journal of Hydrogen Energy*, 2017, **42**, 4456–4464.
- 18 D. Heidari, S. Javadpour and S. H. Chan, *Energy Conversion and Management*, 2017, **136**, 78–84.
- 19 M. A. Laguna-Bercero, H. Monzón, A. Larrea and V. M. Orera, *J. Mater. Chem. A*, 2016, **4**, 1446–1453.
- 20 M.-B. Choi, B. Singh, E. D. Wachsman and S.-J. Song, *Journal of Power Sources*, 2013, **239**, 361–373.
- 21 H.-J. Choi, Y.-H. Na, M. Kwak, T. W. Kim, D.-W. Seo, S.-K. Woo and S.-D. Kim, *Ceramics International*, 2017, **43**, 13653–13660.
- 22 K. J. Kim, I. Thaheem, I. Jeong, H. Yu, J. H. Park and K. T. Lee, *Journal of Power Sources*, 2022, **539**, 231611.
- 23 Y. Tian, W. Wang, Y. Liu, L. Zhang, L. Jia, J. Yang, B. Chi, J. Pu and J. Li, *ACS Appl. Energy Mater.*, 2019, **2**, 3297–3305.

- Z. Yue, L. Jiang, Z. Chen, N. Ai, Y. Zou, S. P. Jiang, C. Guan, X. Wang, Y. Shao, H. Fang, Y. Luo and K. Chen, *ACS Appl. Mater. Interfaces*, 2023, **15**, 8138–8148.
- 25 Y. Niu, Y. Zhou, W. Lv, Y. Chen, Y. Zhang, W. Zhang, Z. Luo, N. Kane, Y. Ding, L. Soule, Y. Liu, W. He and M. Liu, *Adv. Funct. Mater.*, 2021, **31**, 2100034.
- 26 B.-K. Park and S. A. Barnett, *J. Mater. Chem. A*, 2020, **8**, 11626–11631.
- 27 X. Tong, Y. Xu, Đ. Tripković, P. V. Hendriksen, W.-R. Kiebach and M. Chen, *J. Mater. Chem. A*, 2020, **8**, 9039–9048.
- Z. Chen, L. Jiang, S. He, C. Guan, Y. Zou, Z. Yue, N. Ai, S. P. Jiang, Y. Shao and K. Chen, *Applied Catalysis B: Environmental*, 2022, **305**, 121056.
- 29 K. Chen, N. Li, N. Ai, M. Li, Y. Cheng, W. D. A. Rickard, J. Li and S. P. Jiang, *J. Mater. Chem. A*, 2016, **4**, 17678–17685.
- 30 H. Liu, X. Zhu, M. Cheng, Y. Cong and W. Yang, *Chem. Commun.*, 2011, **47**, 2378–2380.
- L. Zhang, D. Li and S. Zhang, *Ceramics International*, 2017, **43**, 2859–2863.
- 32 Y. Zhu, W. Zhou, Y. Chen and Z. Shao, Angew. Chem. Int. Ed., 2016, 55, 8988– 8993.
- 33 Y. Liu, Y. Tian, W. Wang, Y. Li, S. Chattopadhyay, B. Chi and J. Pu, *ACS Appl. Mater. Interfaces*, 2020, **12**, 57941–57949.
- 34 Y. Tian, W. Wang, Y. Liu, A. Naden, M. Xu, S. Wu, B. Chi, J. Pu and J. T. S. Irvine, *ACS Catal.*, 2021, **11**, 3704–3714.
- 35 X. Xi, Z.-S. Cao, X.-Q. Shen, Y. Lu, J. Li, J.-L. Luo and X.-Z. Fu, *Journal of Power Sources*, 2020, **459**, 228071.
- 36 K.-Y. Lai and A. Manthiram, *Chem. Mater.*, 2018, **30**, 2515–2525.
- 37 O. Kwon, S. Sengodan, K. Kim, G. Kim, H. Y. Jeong, J. Shin, Y.-W. Ju, J. W. Han and G. Kim, *Nat Commun*, 2017, **8**, 15967.
- 38 C. Yang, J. Li, Y. Lin, J. Liu, F. Chen and M. Liu, *Nano Energy*, 2015, **11**, 704–710.
- 39 S. Sengodan, S. Choi, A. Jun, T. H. Shin, Y.-W. Ju, H. Y. Jeong, J. Shin, J. T. S. Irvine and G. Kim, *Nature Mater*, 2015, **14**, 205–209.
- 40 Z. Wang, Z. Wang, W. Yang, R. Peng and Y. Lu, *Journal of Power Sources*, 2014, **255**, 404–409.
- 41 L. Yang, Y. Choi, W. Qin, H. Chen, K. Blinn, M. Liu, P. Liu, J. Bai, T. A. Tyson and M. Liu, *Nat Commun*, 2011, **2**, 357.
- 42 Z. Zhan and S. Barnett, *Solid State Ionics*, 2005, **176**, 871–879.
- 43 L. Zhang, C. Yang, A. I. Frenkel, S. Wang, G. Xiao, K. Brinkman and F. Chen, *Journal of Power Sources*, 2014, **262**, 421–428.
- 44 M. Qin, T. Tan, K. Li, Z. Wang, H. Yang, Z. Liu, M. Zhou, T. Liu, C. Yang and M. Liu, *International Journal of Hydrogen Energy*, 2020, **45**, 21464–21472.