Supporting Information

In Situ Dual-Modification Strategy for O3-NaNi_{1/3}Fe_{1/3}Mn_{1/3}O₂ towards High-Performance Sodium-Ion Batteries

Ningyun Hong^a, Jianwei Li^e, Shihong Guo^a, Huawei Han^a, Haoji Wang^b, Xinyu Hu^b, Jiangnan Huang^b, Baichao Zhang^b, Fang Hua^a, Bai Song^f, Nesrin Bugday^c, Sedat Yasar^c, Serdar Altin^d, Wentao Deng^{b,*}, Guoqiang Zou^b, Hongshuai Hou^b, Zhen Long^{a,*}, Xiaobo Ji^{b,*}

^a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Science and Engineering, Tianjin University of Technology, Tianjin, China

^b State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, China

^c Department of Chemistry, Inonu University, Malatya, Turkey

^d Department of Physics, Inonu University, Malatya, Turkey

^e Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences (CAS), Xining, China

^f Dongying Cospowers Technology Limited Company, China

Supplementary Note:

The Na⁺ chemical diffusion coefficients for GITT results can be calculated by the Weppner and Huggins equation:

$$D_{\text{GITT}} = \frac{4}{\pi \tau} \left(\frac{m_{\text{B}} V_m}{M_{\text{B}} S} \right)^2 \left(\frac{\Delta E_{\text{s}}}{\Delta E_{\tau}} \right)^2 \qquad (\tau \ll L^2/D)$$
(1)

Where m_B , M_B , S, and V_M are the molecular weight, mass and molar volume of the cathode electrode, respectively. S and L represent the surface area and average radius of the active material particles. ΔE_s and ΔE_τ are steady-state voltage and the total change of the cell voltage during the current pulse process.

For CV results, the apparent Na⁺ diffusion coefficients D_{Na^+} can be calculated based on the Randles-Sevcik equation:

$$I_p = 2.69 \times 10^5 n^{3/2} A D_{\text{Na}+}^{1/2} v^{1/2} \Delta C_0$$
⁽²⁾

Where I_p is the peak current, *n* denotes the electron transfer number of the reaction, *A* represents the electrode area of the cathode, *v* represents the scan rate, and ΔC_0 is the concentration of Na⁺ in the lattice.

Fig. S1. The comparison of ionic radius and bonding energy with different elements.

Fig. S2. (a-b) The initial four CV curves at a scanning rate of 0.1 mV s⁻¹ for NFM and NFMV-1.

Fig. S3. (a-b) GCD curves at different current rate for NFM and NFMV-1.

Fig. S4. Long-term cycling performance of NFM and NFMV-1 at 1 C at the voltage from 2.0- $4.2~{\rm V}$

Fig. S5. (a-b) GCD curves at different scan rate for NFM and NFMV-1.

Fig. S6. Transient voltage-time profile obtained from GITT test for the obtained Samples.

Fig. S7.Ni/Fe K-edge of NFM under different charging state.

Fig. S8. In situ XRD patterns collected during the first charge/discharge of NFM and NFMV-1 over a voltage range of 2.0-4.0 V.

Fig. S9. The detailed change of lattice parameters of selected electrodes during the cycling process.

Fig. S10. equivalent circuit of EIS.

Fig. S11. SEM image of the of cycled cathodes for (a-b) NFM, (c-d)NFMV-1.

Fig. S12. XPS results of cycled cathodes for selected elements.

Theoretical chemical formula	Measured atomic ratio						
Theoretical chemical for mula	Na	Ni	Mn	Fe	V		
$NaNi_{0.333}Mn_{0.333}Fe_{0.333}O_2$	1.003	0.337	0.335	0.333	0		
$NaNi_{0.331}Mn_{0.331}Fe_{0.331}V_{0.005}O_2$	1.001	0.333	0.332	0.331	0.0048		
$NaNi_{0.330}Mn_{0.330}Fe_{0.330}V_{0.010}O_2$	1.006	0.328	0.330	0.329	0.0106		
$NaNi_{0.328}Mn_{0.328}Fe_{0.328}V_{0.015}O_2$	0.997	0.325	0.329	0.323	0.0140		

Table S1. ICP-OES results of all the samples.

Table S2. Crystallographic data and refinement parameters of all the samples.

Samples	NFM	NFMV-0.5	NFMV-1	NFMV-1.5
<i>a, b</i> [Å]	2.9788	2.9775	2.9742	2.9722
<i>c</i> [Å]	16.0304	16.0375	16.0518	16.0578
α, β [°]	90	90	90	90
γ [°]	120	120	120	120
<i>V</i> [Å ³]	123.189	123.134	122.972	122.85
<i>R</i> _p [%]	1.75	4.35	1.31	1.51
$R_{ m wp}$ [%]	2.47	5.58	1.86	2.05

Table S3. Atomic distances, slab thickness and d-spacing of the Na layer for NFM and NFMV-1 from XRD refinement.

Samples	NFM	NFMV-1
TM-O [Å]	2.089	2.076
Na-O [Å]	2.272	2.284
TMO ₂ [Å]	2.372	2.336
Na-spacing [Å]	2.970	3.014
Interlayer [Å]	5.342	5.350

Samples	Charge	Discharge
Samples	$D_{\rm Na^+} [10^{-11} {\rm ~cm^2 ~s^{-1}}]$	$D_{\rm Na^+} [10^{-11} {\rm ~cm^2 ~s^{-1}}]$
NFM	6.80	3.95
NFMV-1	12.32	5.94

Table S4. The calculated diffusion coefficients by GITT test for (a) NFM, (b) NFMV-1.

Table S5. EIS test results for (a) NFM, (b) NFMV after different cycled.

Samples	$R_{s}(\Omega)$	$\mathrm{R_{sf}}\left(\Omega ight)$	$R_{ct}(\Omega)$
NFM-uncycled	5.4	0	257.0
NFMV-uncycled	5.4	0	153.2
NFM-after 2 cycled	5.4	0	274.1
NFMV-after 2 cycled	5.6	0	164.8
NFM-after 500 cycled	7.2	469.7	734.2
NFMV-after 500 cycled	7.0	218.0	587.4

Table S6. Comparison of cycling performances of V-NFM with other modified NFM cathodes.

Cathode	Voltage window (V)	Cycling stability	Ref.	
NWO NEM	2040V	75.8%, 500, 2 C	This work	
	2.0-4.0 V	96.4%, 150, 0.5 C	THIS WORK	
	20403	50.7%, 500, 2 C		
NFM	2.0-4.0 V	74.2%, 150, 0.5 C	This work	
Zn-NFM	2.0-4.0 V	86.53%, 200, 1C	1	
F-NFM	2.0-4.0 V	90%, 70, 1C	2	
ZrO2-NFM	1.5-4.0 V	86%,100, 1 C	3	
MoF-NFM	2.0-4.0 V	91.97%, 100, 1C	4	
NTP-NFM	1.5-4.2 V	77.5%, 100, 1C	5	
Sn-NFM	2.0-4.1 V	75%, 150, 0.5C	6	

Atom	Wyckoff position	X	У	Z	Occ.
Na	3b	0	0	0	1
Ni	3a	0	0	0.5	0.333
Mn	3a	0	0	0	0.333
Fe	3a	0	0	0	0.333
Ο	6c	0	0	0.25933(14)	1

Table S7. Crystallographic and Rietveld refinement data of the NFM cathode.

Table S8. Crystallographic and Rietveld refinement data of the NFMV-1 cathode.

Atom	Wyckoff position	X	У	Z	Occ.
Na	3b	0	0	0	1
Ni	3a	0	0	0.5	0.330
Mn	3a	0	0	0	0.330
Fe	3a	0	0	0	0.330
V	3a	0	0	0	0.010
0	6c	0	0	0.26055(10)	1

Table S9. EXAFS fitting results for Fourier transformed $k^3 \times (k)$ Ni K-edges structural parameters of samples.

Samples Ato	Atom	Atom X-Y pair	CN R (Å)	D (Å)	σ2 /(10-2	ΔE ₀	D factor
	Atom			К (А)	Ų)	(eV)	K-lactor
NEM	Ni-O	Ni-O	6	2.06929	0.779	5 5 5 8	0.006
Ni-T	Ni-TM	Ni-TM	6	2.95681	0.720	-5.558	0.000
NFMV-1	Ni-O	Ni-O	6	2.09134	0.983	2 752	0.014
	Ni-TM	Ni-TM	6	2.99016	0.719	-2.732	0.014

CN: coordination number; R: bond length; σ^2 : Debye-Waller factor (disorder); ΔE_0 : energy parameter.

Table S10 Transition metal ion dissolution results of cycled batteries.

Samula	Concentration (ug/L)				
sample -	Ni	Fe	Mn		
NFM	276.34	650.53	16.93		
NFMV-1	154.35	443.78	15.89		

Reference

- 1. W. Qin, Y. Liu, J. Liu, Z. Yang and Q. Liu, *Electrochimica Acta*, 2022, **418**.
- Q. Zhang, Y. Huang, Y. Liu, S. Sun, K. Wang, Y. Li, X. Li, J. Han and Y. Huang, Science China Materials, 2017, 60, 629-636.
- 3. Y. Yu, D. Ning, Q. Li, A. Franz, L. Zheng, N. Zhang, G. Ren, G. Schumacher and X. Liu, *Energy Storage Materials*, 2021, **38**, 130-140.
- 4. W. Li, Q. Chen, D. Zhang, C. Fang, S. Nian, W. Wang, C. Xu and C. Chang, *Materials Today Communications*, 2022, **32**.
- S. Zhao, Q. Shi, R. Qi, X. Zou, J. Wang, W. Feng, Y. Liu, X. Lu, J. Zhang, X. Yang and Y. Zhao, *Electrochimica Acta*, 2023, 441.
- T. Song, L. Chen, D. Gastol, B. Dong, J. F. Marco, F. Berry, P. Slater, D. Reed and E. Kendrick, *Chem Mater*, 2022, 34, 4153-4165.