Supplementary Information for:

First-principles study of intrinsic and hydrogen point defects in the earth-abundant photovoltaic absorber Zn₃P₂

Zhenkun Yuan, Yihuang Xiong, and Geoffroy Hautier*

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA

Email: geoffroy.hautier@dartmouth.edu

Fig. S1 Calculated chemical-potential region (gray colored) for which compositionally stoichiometric Zn_3P_2 is thermodynamically stable. This region prevents formation of the secondary phase ZnP_2 (indicated by the blue line) and bulk Zn and P phases. Two different chemical-potential points: A ($\mu_{Zn} = -0.203 \text{ eV}$, $\mu_P = -0.354 \text{ eV}$) and B ($\mu_{Zn} = 0.0 \text{ eV}$, $\mu_P = -0.658 \text{ eV}$), which represent Zn-poor (P-rich) and Zn-rich (P-poor) equilibrium growth conditions, respectively, are chosen for computing the defect formation energies.

Fig. S2 Single-particle defect states of the V_{Zn} in three different charge states: q = 0, -1, and -2. The filled and empty dots indicate the occupied and unoccupied defect states in the spin-up (red) and spin-down (blue) channels.

Table S1 Thermodynamic transition levels between different charge states q and q' for the intrinsic point defects and the H-related point defects in Zn_3P_2 . Results from previous calculations by Demers *et al.* (Ref. 1) and Yin *et al.* (Ref. 2) are included for comparison.

Defect	$\epsilon(q/q')$		
V _{Zn}	0.11 (0/-), 0.23 (-/2-)		
V_{Zn} (Refs. ^{1, 2})	$0.06^{a} 0.4^{b} (0/-), 0.09^{a} 0.75^{b} (-/2-)$		
V _P	0.88 (+/-), 1.04 (+/0), 0.71 (0/-)		
V_{P} (Refs. ^{1, 2})	$0.25^{b} (2 + / +), 0.24^{a} 0.75^{b} (+ / 0)$		
Zn _i	0.72 (2 + / +), 0.95 (+ /0)		
Zn_i (Refs. ^{1, 2})	$0.04^{a} 0.87^{b} (2 + / +), 0.06^{a} 1.22^{b} (+ / 0)$		
P _i	0.17 (3 + /0), 0.69 (0/ -)		
P_i (Refs. ^{1, 2})	$0.30^{a} 0.35^{b} (0/-), 0.96^{b} (-/2-)$		
Zn _P	0.22 (3 + /2 +), 0.49 (2 + / +), 0.43 (2 + /0), 0.38 (+ /0), 1.26 (0/2 -)		
P _{Zn}	0.24 (3 + / +), 0.72 (+ / 0), 0.61 (+ / -), 0.50 (0 / -)		
H _i	0.57 (+/-)		
$H + V_{Zn}$	0.09 (0/ -)		
$2H + V_{Zn}$	None		
$H + V_P$	0.13 (+ /0)		

a Yin *et al*.

b Demers *et al*.

Table S2 Convergence tests using an energy cutoff of 500 eV or a larger $3 \times 3 \times 2$ supercell. The calculations using 400 eV cutoff and $2 \times 2 \times 2$ supercell have been reported in the main text. For the test calculations, the supercells are based on the same primitive unit-cell lattice parameters, but internal atomic positions are relaxed under the same force convergence criterion. A Γ -only **k**-point is used throughout for Brillouin-zone sampling.

Transition level	400 eV cutoff,	500 eV cutoff,	400 eV cutoff,
	$2 \times 2 \times 2$ supercell	$2 \times 2 \times 2$ supercell	$3 \times 3 \times 2$ supercell
$V_{Zn}(0/-)$	0.11	0.11	0.08
$V_{Zn}(-/2-)$	0.23	0.23	0.18
$P_{i}(0/-)$	0.69	0.70	0.75

Fig. S3 Formation energies of the V_P , P_i , Zn_P , and P_{Zn} as a function of Fermi level with more detailed information on charge-state transitions.

Fig. S4 Local atomic geometry: (a) H_i in q = 0 and -1 charge states; (b) H_i in q = +1 charge states; (c)-(e) ${}^{H+V_{Zn}}$, ${}^{2H+V_{Zn}}$, and ${}^{H+V_P}$ complexes (in their neutral charge state) in Zn₃P₂. For eye guide the vacancy centers are pointed by arrows.

Fig. S5 Calculated bulk hole density in Zn_3P_2 as a function of hydrogen chemical potential (μ_H), assuming the V_{Zn} concentration is not affected by hydrogen. $\mu_H = 0$ corresponds to the H-rich limit. For μ_H higher (lower) than ~0.4 eV, hole carriers arise mostly from the $H + V_{Zn}$ (V_{Zn}) acceptors. In calculating the defect and carrier densities, the temperature is set to 350 °C (a typical growth temperature of Zn_3P_2).³

References

- 1. S. Demers and A. van de Walle, *Physical Review B*, 2012, **85**, 195208.
- 2. W.-J. Yin and Y. Yan, *Journal of Applied Physics*, 2013, **113**, 013708.
- 3. K. Kakishita, S. Ikeda and T. Suda, *Journal of Crystal Growth*, 1991, **115**, 793-797.