Electronic Supplementary Information for

Multipoint-bridging structure with piezoelectric-induced S-scheme junction for piezoelectrically-enhanced photoelectrochemical H_2O_2 production

Chenpu Chen, Jun Cheng*

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

^{*}Corresponding author.

E-mail address: cj1006@hunnu.edu.cn (J. Cheng).

Scheme S1. Device image of the PPEC-ORR. Here, the side length of the PEC cell is 5 cm, the solution volume is 30 mL, the electrode area is 1 cm⁻², the stirring bar length is 1 cm, and the distance between the electrode and the stirring bar is 0.5 cm.

Scheme S2. Illustration of the energy band structures and the possible electron-transfer pathways on the Au_{NP}/p -CdS_{NW}/ITO electrode in an unstirred (A) or 1500-rpm-stirred (B) O₂-saturated 0.5 M aqueous Na₂SO₄ under 100 mW cm⁻² AM 1.5G simulated sunlight illumination. Here, although solution stirring can bend the p-CdS_{NW} to generate piezoelectric charges and interleave the energy band positions of two adjacent p-CdS_{NW}¹, the spatial distance between the p-CdS_{NW} is sufficiently large and there is no transverse electron conductor bridge. Therefore, transverse electron transfer between adjacent p-CdS_{NW} is not possible (dashed arrows).

Fig. S1. SEM image of n-CdS $_{\rm NW}/\rm ITO$ electrode.

Fig. S2. SEM images of the Au_{NR}/p -CdS_{NW}/ITO electrodes prepared by photodeposition of Au_{NR} at different times.

Fig. S3. XRD patterns of the bare ITO, p-CdS $_{\rm NW}/\rm ITO$ and Au $_{\rm NR}/\rm p-CdS_{\rm NW}/\rm ITO$ electrodes.

Fig. S4. UV-vis DRS (A) and PL spectra (B) for the p-CdS $_{\rm NW}/\rm ITO,\,Au_{\rm NP}/p-CdS_{\rm NW}/\rm ITO$ and

 Au_{NR}/p -CdS_{NW}/ITO electrodes.

Fig. S5. (A) EIS results of the bare ITO, CdS_{seed}/ITO , p- CdS_{NW}/ITO and $Au_{NR}/p-CdS_{NW}/ITO$ electrodes in 0.5 M aqueous Na_2SO_4 containing 2.0 mM K₄[Fe(CN)₆] under dark and unstirred conditions, (B) EIS results of the $Au_{NR}/p-CdS_{NW}/ITO$ electrode in 0.5 M aqueous Na_2SO_4 containing 2.0 mM K₄[Fe(CN)₆] either without stirring or stirred at 1500 rpm (dark and unstirred; dark and stirred; illuminated and unstirred; or illuminated and stirred).

Fig. S6. Mott-Schottky curve for the n-CdS $_{\rm NW}/\rm ITO$ electrode.

Fig. S7. (A) *j-t* curves under continuous light illumination and (B) *j-t* curves under choppedlight illumination (1 h switch time) of the Au_{NR}/p -CdS_{NW}/ITO, Au_{NP}/p -CdS_{NW}/ITO and p-CdS_{NW}/ITO electrodes at 0.4 V vs RHE in O₂-saturated 0.5 M aqueous Na₂SO₄ stirred at 1500 rpm under 100 mW cm⁻² Xe lamp illumination.

Fig. S8. UV-vis absorption spectra of Fe³⁺ generated by the FeSO₄-H₂O₂ redox reaction for standard (A, a series of prepared standard H₂O₂ solutions) or sample (B, the photocathode solution after different PPEC-ORR time) H₂O₂ solutions. The insets show the linear relationship of the peak absorbance at 330 nm versus H₂O₂ concentration (c_{H2O2}) or PPEC-ORR time (t_{PPEC}). Photocurrent density (C) and H₂O₂ yield (D) on the Au_{NR}/p-CdS_{NW}/ITO electrode at 0.4 V vs RHE in O₂-saturated 0.5 M aqueous Na₂SO₄ stirred at 1500 rpm under 100 mW cm⁻² AM 1.5G simulated sunlight illumination. Here, the molar concentration of H₂O₂ generated by PPEC and ORR is determined by UV-vis spectrophotometry of Fe³⁺ based on the FeSO₄-H₂O₂ redox reaction. The molar concentration of Fe³⁺ (c_{Fe3+}) produced after the FeSO₄-H₂O₂ redox reaction can be calculated according to the Lambert-Beer law.

The corresponding molar quantity of H_2O_2 (*n*) can be obtained by UV-vis spectrophotometry of Fe³⁺ based on the FeSO₄-H₂O₂ redox reaction $2Fe^{2+} + H_2O_2 + 2H^+ =$ $2Fe^{3+} + 2H_2O$. The electric charge (*Q*') corresponding to the ORR generation of *n* mol H₂O₂ can be obtained from the Faraday law of electrolysis, *Q*' = *zFn*, where *z* is the number of electrons transferred during ORR (*z* = 2) and *F* is the Faraday constant (96485.3 C mol⁻¹). The Faraday efficiency (η) is calculated according to $\eta = Q'/Q \times 100\%$. At 60 min in Fig. S8B, we obtain $n = 108.9 \text{ }\mu\text{mol}$, Q' = 21.01 C, and Q = 22.07 C, so $\eta = 95.2\%$.

Reference

L. Pan, S. C. Sun, Y. Chen, P. H. Wang, J. Y. Wang, X. W. Zhang, J. J. Zou and Z. L. Wang, *Adv. Energy Mater.*, 2020, 10, 2000214.