Supporting Information

Charge accumulation kinetics at a liquid-solid interface depend on liquid chemistry

Xin Liu1,2#, Jinyang Zhang2,3#, Xuejiao Wang2,4#, Shiquan Lin2,3, and Zhong Lin Wang2,3,5,*

1. College of engineering, Zhejiang Normal University, Zhejiang 321000, P. R. China
2. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
3. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
4. Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P.R. China
5. Georgia Institute of Technology, Atlanta, GA 30332–0245, USA

E–mail: zlwang@gatech.edu
Figure S1. Charge accumulation rates of 1M CaCl$_2$ contacting with FEP.
Figure S2. Relationship between solution concentrations and charge accumulation rates. (a and b) Charge accumulation rate curves for 1.5 M and 0.5 M CaCl₂ solutions. (c) Charge accumulation rates for different concentrations of CaCl₂ solutions.
Figure S3. Current curves and corresponding transferred charges of CaCl₂ droplets of different concentrations at first droplet. (a) Current curves for CaCl₂ droplets of different concentrations. (b) Transferred charges of CaCl₂ droplets of different concentrations.