SUPPLEMENTARY INFORMATION

Unravelling the electrochemical activation and the reaction mechanism of *maricite*-NaFePO₄ using multimodal operando techniques

Carlos Berlanga,^{a,b} Moulay Tahar Sougrati,^{c,d} Antonio J. Fernández-Ropero,^a Neyrouz Baaboura,^a Nicholas E. Drewett,^a Juan M. Lopez del Amo,^a Gene Nolis,^a Jose S. Garitaonandia,^e Marine Reynaud,^a Lorenzo Stievano,^{c,d} Montse Casas-Cabanas^{a,f,*} and Montse Galceran^{a,*}

a. Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein, 48, 01510, Vitoria-Gasteiz, Spain.

b. Departamento de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain.

c. ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France

d. RS2E, CNRS, Amiens, France

e. Dpto. Física. Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao

f. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain;

Tables and Figures

Table SI1. Summary of the unit cell parameters and average crystallite size obtained from the Le Bailrefinement of the XRD patterns of the 5 samples depending on the ball-milling time

S.G. Pnma	a (Å)	b (Å)	<i>c</i> (Å)	V (Å)	Crystallite size (nm)
NFP_0h	8.9959(9)	6.8617(8)	5.0459(6)	310.90(3)	170 ± 3
NFP_3h	8.9903(3)	6.8573(5)	5.0437(4)	310.90(4)	30 ± 0.5
NFP_6h	8.9902(8)	6.8582(6)	5.0437(5)	310.98(5)	24 ± 0.3
NFP_9h	8.990(2)	6.858(1)	5.034(1)	310.9(1)	20 ± 0.3
NFP_12h	8.987(1)	6.856(1)	5.0408(8)	310.98(5)	15 ± 0.1

Table SI2. Summary of first charge and discharge capacity of the NaFePO₄/C after different ball milling times 0h (NFP_0h) 3h (NFP_3h), 6h (NFP_6h), 9h (NFP_9h) and 12h (NFP_12h) and valence of the iron contained in the samples as determined from Mössbauer spectroscopy

Sample	Galvanost	atic cycle	Mössbauer spectroscopy		
	1 st charge (mAh g⁻¹)	1 st discharge (mAh g ⁻¹)	Fe ²⁺	Fe ³⁺	
NFP_0h	21	13	100%	0	
NFP_3h	50	65	83 %	17 %	
NFP_6h	62	85	72 %	28 %	
NFP_9h	64	92	66 %	34 %	
NFP_12h	72	100	63 %	37 %	

 Table SI3. Mössbauer spectroscopy parameters of NFP_12h ball milled under different atmospheres (air and neutral atmosphere of Argon)

		ISO (mm s ⁻¹) QUA (mm s ⁻¹)		WID (0.3 mm s ⁻¹)	Fe%
	Fe ²⁺	1.21	2.20	0.35	63%
NFP_12II_AII	Fe ³⁺	0.36	0.99	0.55	37%
NED 12h Argen	Fe ²⁺	1.20	2.20	0.37	64%
NFP_12n_Argon	Fe ³⁺	0.39	0.93	0.60	36%

Table SI4. Crystallographic data (unit cell parameters, atomic positions, isotropic agitation factors B_{iso} , site occupancies) of NFP_12h obtained from the Rietveld refinement of its SXRD pattern ($R_p = 7.42$; $R_{wp} = 7.16$; $R_e = 2.40$; Chi₂ = 8.90)

S.G. Pnma		a = 8.9927(5) Å	<i>b</i> = 6.8604(3) Å	<i>c</i> = 5.0446(3) Å	
Atom	Wickoff site	x/a	y/b	z/c	Осс
01	8d	0.121(1)	0.066(1)	0.328(2)	1.0000
02	4c	0.350(1)	0.250	0.463(3)	0.5000
03	4c	0.123(2)	0.250	0.747(3)	0.5000
Fe1	4a	0	0	0	0.5000
P1	4c	0.176(1)	0.250	0.456(2)	0.5000
Na1	4c	0.345(1)	0.250	0.969(3)	0.480(8)

Table SI5. Summary of the in situ Mössbauer spectroscopy data. Evolution of the voltage capacity, time and valence of the iron extracted from figure 9

Voltage (V)	Capacity (mAh g ⁻¹)	Time (h)	Fe ²⁺	Fe ²⁺	Fe ²⁺ (A)	Fe ²⁺ (B)	Fe³⁺(A)	Fe³⁺(B)
OCV	0	0	58.5	41.5	50.5	10.3	28.7	10.5
4.5	50	16	50.2	49.8	45.2	7.8	34.4	12.6
1.5	80	40	90.5	9.5	71	20.1	6.5	2.4
4.5	82	64	53.5	46.5	47.3	8.8	32.1	11.6

Figure SI1. SEM image of the pure maricite NaFePO₄ obtained by hydrothermal synthesis (NFP_0h)

Figure SI2. Mössbauer spectrum of pristine maricite NaFePO₄ (NFP_Oh) prepared by hydrothermal synthesis

Figure SI3. SEM images of the NaFePO₄/C after different ball milling times (a) 3h (NFP_3h), (b) 6h (NFP_6h), (c) 9h (NFP_9h)and (d) 12h (NFP_12h).

Figure SI4. XRD patterns of triphylite carbon coated NFP (cc-*t*-NFP) obtained after chemical delithiation and posterior chemical sodiation of commercial carbon coated LiFePO₄, and maricite NFP (cc-*m*-NFP) obtained from carbon coated NFP after heat treatment. The short vertical lines indicate the Bragg peak positions of the maricite NFP (blue vertical lines) and triphylite NFP (black vertical lines)

Figure SI5. First charge and discharge curve of pristine maricite carbon coated NaFePO₄ (*cc*-m-NFP) obtained by heat treat of triphylite carbon coated NFP (cc-t-NFP)

Figure SI6. Mössbauer spectra of NFP_12h in different atmospheres (air and argon). The corresponding hyperfine parameters are given in Table SI3.

Figure SI7. Raman spectra for samples after ball milling for differing time periods

Figure SI8. ³¹P solid state NMR spectrum of pristine NFP_0h and at 3h and 12h ball milling time.

Figure SI9. Rietveld refinement of the SXRD of the NFP_12h measured on a capillary.