Electronic Supplementary Information

Fireproof Ultrastrong Cellulose **All-Natural** Nanofiber/Montmorillonite-Supported **MXene** Electromagnetic with Interference Nanocomposites Shielding Thermal Management Multifunctional and **Applications**

Rui Cheng^a, Ying Wu^b, Bin Wang^a, *, Jinsong Zeng^a, Jinpeng Li^a, *, Jun Xu^a, Wenhua Gao^a, and Kefu Chen^a

^aPlant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China

^bGuangDong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China

*Bin Wang. E-mail: febwang@scut.edu.cn *Jinpeng Li. E-mail: ljp@scut.edu.cn

Characterizations

EMI shielding performances. The EMI shielding performances were measured through a vector network analyzer (PNA-N5244A, Agilent, USA) in the frequency range of 8.2-12.4 GHz (X-band). The transmission coefficient (T), reflection coefficient (R), absorption coefficient (A), total EMI SE (SE_T), reflection (SE_R), absorption (SE_A), and multiple internal reflections (SE_M) were calculated as follows:

 $R = |S_{11}|^2 = |S_{22}|^2, T = |S_{12}|^2 = |S_{21}|^2(1)$ A = 1 - R - T(2) $SE_R = -10\log(1 - R), SE_A = -10\log[T/(1 - R)](3)$ $SE_T = SE_A + SE_R + SE_M(4)$

Where the SE_M is negligible if the SE_T is higher than 10 dB. To further assess the EMI shielding capability, EMI SE/t is normalized to emiminate the effect of thickness. Furthermore, specific shielding effectiveness (SSE) and SSE/t taking into account the density and thickness are described as follows

SSE = EMI SE/density =
$$dB \cdot cm^3 \cdot g^{-1}(5)$$

SSE/t = SSE/thickness = $dB \cdot cm^2 \cdot g^{-1}(6)$

EMI shielding efficiency (%), which represents the capability to block waves in terms of percentage, is achieved by the equation

Shielding efficiency (%) = 100 -
$$\left(\frac{1}{\frac{\text{SE}}{100^{10}}}\right) \times 100_{(7)}$$

Fig. S1 (a) Digital image of CNF dispersion. (b) AFM image of CNFs.

Fig. S2 Digital image of MMT dispersion. (b) AFM image of MMT nanosheets.

Fig. S3 Digital image of CNF/MMT dispersion.

Fig. S4 (a) Digital image of MXene dispersion. (b) XRD patterns of Ti_3AlC_2 MAX, m-MXene,

and MXene $(d-Ti_3C_2T_x)$. (c) AFM and (d) TEM images of MXene nanosheets.

Fig. S5 SEM cross section and EDS mapping images of CMMP.

Fig. S6 SEM images of the CMMPs at (a) MXene side and (b) CMP side.

Fig. S7 FTIR spectra of CMP and CMMP. The CMP and CMMP spectrums show a weak peak at 844 cm⁻¹corresponding to the vibration of Al-O-C bond, which is formed by the hydroxyl groups of the CNFs with the Al of the MMT nanosheets.

Fig. S8 XPS wide-scan spectra of CNF, MMT, CMP, and pristine MXene.

Fig. S9 SEM image of tensile fracture-surface morphologies of pure CNF papers.

Fig. S10 Comparison of the electrical conductivity and tensile strength between the CMMPs and previously reported MXene-based nanocomposites.

Fig. S11 Digital image showing great flexibility of the CMMP. (b) Real-time relative resistance of the CMMP during repeated bending and stretching.

Fig. S12 The shielding efficiency of the CMMPs.

Fig. S13 EMI SE/t and SSE/t of the CMMPs.

HFSS simulation

In this study, all electromagnetic field simulations were performed by ANSYS HFSS 2021 R2 in the frequency domain. The size of the rectangular waveguide clamp is defined as a 22.86 \times 10.16 \times 40 mm ($x \times y \times z$). The model spaces are assigned the Floquet excitations and the master and slave boundaries. In brief, S1 and S2 corresponding to port 1 and 2 for the vector network analyzer are set up to generate electric field excitation and receive EM signals, respectively. The transmission mode of EM waves in the waveguide fixture is defined as the typical transverse electric wave, where the propagation directions of the electric field and magnetic field are vertical to each other. The XY plane of the cuboid is selected as the excitation face of the wave port and electromagnetic wave propagation along the Z direction. The rectangular waveguide boundary is set as a perfectly electric conductor (Perfect E). The mesh quality of the CMMPs is the default value. The solution step is set to frequency sweep, where the frequency type is the linear step from 8.2 GHz to 12.4 GHz with an interval of 0.1 GHz. The detailed parameters of the HFSS EMI simulation, such as electrical conductivity, thickness, permeability, excitation type, boundary conditions, etc. (Table S6[†]), are then put into the created model. The simulation results are achieved after executing the calculations.

Fig. S14 Simulation diagram of (a) electric field distribution and magnetic field distribution in the rectangular waveguide clamp. (c) Electric field distribution and (d) magnetic field distribution of pure CMP.

Fig. S15 Simulation diagram of (a) electric field distribution and magnetic field distribution in the rectangular waveguide clamp. (c) Electric field distribution and (d) magnetic field distribution of the CMMP-5 wt%.

Fig. S16 Simulation diagram of (a) electric field distribution and magnetic field distribution in the rectangular waveguide clamp. (c) Electric field distribution and (d) magnetic field distribution of the CMMP-10 wt%.

Fig. S17 Simulation diagram of (a) electric field distribution and magnetic field distribution in the rectangular waveguide clamp. (c) Electric field distribution and (d) magnetic field distribution of the CMMP-30 wt%.

Fig. S18 Simulation diagram of (a) electric field distribution and magnetic field distribution in the rectangular waveguide clamp. (c) Electric field distribution and (d) magnetic field distribution of the CMMP-50 wt%.

Fig. S19 Simulation diagram of (a) electric field distribution and magnetic field distribution in the rectangular waveguide clamp. (c) Electric field distribution and (d) magnetic field distribution of the CMMP-70 wt%.

Fig. S20 (a) I-V curve of the CMMPs-10 at increased driving voltages. (b) Experimental data and linear fitting of saturation temperature *versus* U^2 . (c) IR images under distinct voltages.

Fig. S21 Heating stability and repeatability of the CMMPs-10 upon repeated driving voltages.

Fig. S22 Photographs of the CMMPs on a hot flame with time ranging from 0 to 30 s for (a) CMP direction and (b) MXene direction.

Method	Method Materials		Modulus (GPa)	Ref.
Filtration	MXene-CNF	135.4	3.8	1
Filtration	MXene-PVA	91.0	3.7	2
Filtration	MXene-CNF	212.0	7.0	3
Filtration	MXene-ANF	197.4	2	4
Filtration	MXene-ANF	116.7	5.0	5
Filtration	MXene-CNF-CNT	97.9	2.6	6
Filtration	MXene-ANF	131.3	8.3	7
Filtration	MXene-AgNWs-ANF	235.9	4.1	8
Filtration	MXene-ANF	166.0	4.8	9
Filtration	MXene-ANF	232.0	13.8	10
Filtration	MXene-CNF-AgNWs	118.0	5	11
Filtration	MXene-CNF	112.5	6	12
Filtration	MXene-CNF	114.4	4.1	13
Filtration	MXene-CNF	191.3	11.1	14
Filtration	MXene-CNF-	237.1	8.5	15
		110.1	2.5	10
Filtration	MXene-SA-MM1	110.1	9.0	16
Filtration	cellulose	252.2		17
Filtration	MXene-ANF	242.8	11.3	18
Filtration	MXene-PU	96.1	7.9	19
Filtration	MXene-PI	102.0	9	20
Filtration	MXene-xanthan	116.5	10.8	21
Filtration	MXene-Al ³⁺	83.2	7.4	22
Filtration	MXene-H ⁺	114.0	7.5	23
Blade-coating	MXene-ANF	198.8	6.1	24
Casting	MXene-PVA-BA	80.5	3.9	25
Casting	MXene-AgNWs-PVDF	39.2	0.46	26
In-situ biosynthesis	1 biosynthesis MXene-bacterial cellulose		5.1	27
Layer-by-layer	yer-by-layer MXene-CNF-bacterial		5.0	20
assembly	assembly cellulose		5.0	28
Layer-by-layer	MVone ANE	177.0	2.0	20
assembly		1//.9	2.0	29
Layer-by-layer	MYene_DVA MMT	225.0	10.5	30
assembly		223.0	10.5	
Successive	MXene_CNF_MMT	213.4	9.9	This
filtration		249.7	10.7	work

Table S1 Mechanical properties of previously reported MXene-based composite papers/films prepared by other strategies, including filtration, blade-coating, casting, in-situ biosynthesis, and layer-by-layer assembly¹⁻³⁰.

272.7	10.8	
236.2	10.5	

Method	Materials	Content (wt %)	Strength (MPa)	Conductivity (S/cm)	Ref.
			260.0	6.2	
Filtration			275.4	4.6	
	MXene-CNF-TA		248.2	3.2	31
			199.3	2.1	
		5	248.8	16.4	
		10	285.4	37.6	
Filtration	MXene-ANF	20	302.1	82.9	18
		40	242.8	260.7	
		50	135.4	0.097	
		60	74.1	0.134	
Filtration	MXene/CNF	80	60.2	1.16	
		90	44.2	7.39	
		50	141.9	28.4	
Filtration	MXene-CNF	40	212.2	12.1	3
		30	196.1	0.3	
Filtration	MXene-CNF	50	68.0	1185.0	32
	MXene-ANF	40	136.6	24.8	4
		50	83.9	69.6	
Filtration		60	80.1	99.7	
		80	66.3	173.4	
		90	33.1	628.3	
		10	215.9	157.2	
		20	235.9	922.0	
Filtration	MXene-AgNWs-ANF	40	181.6	1736.4	8
		60	148.5	2760.7	
		80	96.0	533.9	
D'1		66.67	116.5	115.3	
Filtration	MXene-xanthan	57.14	114.3	12.1	21
		50	121.1	1.9	
		93	9.8	28.0	
Filtration	MXene-chitosan	90	30.7	27.6	33
		86	43.5	18.2	
		87.5	13.7	340.5	
T '1		83.3	17.6	183.2	34
Filtration	MXene-PEDOT:PSS	80	24.2	83.3	
		75	30.2	20.4	
Filtration	MXene-ANF	80	98.0	879.0	10

Table S2 Comparison of the electrical conductivity and tensile strength between the CMMPs and
 previously reported MXene-based composite papers/films^{1-4, 8, 10, 18, 21, 24, 27, 31-37}.

		10	232.0	0.2	
D'1 4 4'		90	30.0	224.3	
Filtration	MAene-PVA	80	25.0	1.4	
In-situ	MVana haatarial aallulaaa	76.0	112.5	156.2	27
biosynthesis	Wixene-bacterial centilose	/0.9	112.5	130.3	27
Blade-coating	MXene-ANF	80	128.0	930.6	24
Layer-by-layer	MY on a CNT		25.0	120.0	25
assembly	MACHE-CINI	-	23.0	130.0	33
Layer-by-layer		14.7	20.0	3.9	26
assembly	/ MXene-chitosan		12.5	9.7	30
Double cross-	MVana CNE	70	170.0	2112.0	27
linking	MACHE-CINF	70	1/9.0	2115.0	57
Successive filtration		5	249.7	586.5	
	MXene-CNF-MMT	10	272.7	781.5	Thia
		30	236.2	1480.2	work
		50	191.8	1811.7	
		70	161.7	2222.5]

Table S3 Shielding efficiency for the CMMPs

CMMPs	Shielding efficiency (%)
MXene-5 wt %	99.7992
MXene-10 wt %	99.9690
MXene-30 wt %	99.9975
MXene-50 wt %	99.9992
MXene-70 wt %	99.9998

Table S4 Summary of tensile strength and EMI SE/t of our CMMPs and other previously reported

 shielding materials^{1, 3, 4, 6, 8, 12, 18, 21, 24, 34, 38-56}.

Types	Materials	Strength (MPa)	EMI SE/t (dB/cm)	Ref.	
		248.8	12594.3		
	MY and ANE	285.4	14954.1	10	
	MACHE-ANF	302.1	19870.7	18	
		242.8	19379.6		
		99.08	7375.8		
	MVone ANE MMT	154.7	7289.5	20	
	MACHE-ANF-MIMI	130.2	7681.6	30	
		133.5	9853.6		
		44.2	5106.0		
	MXene-CNF	60.2	3514.0	1	
		135.4	1497.0		
	MXene-CNF	212.0	10421.0	3	
		97.9	10105.0	(
	MXene-CNF-CNI	94.9	6157.9	6	
	MXene-ANF	158.5	5539.1	4	
MXene-based composites	MXene-ANF	128.0	12973.0	24	
		166.3	9150.0		
		210.8	7903.23		
	MXene-AgNWs-ANF	215.9	8658.5	8	
		235.9	10688.9		
		181.6	11460.0		
		148.5	11446.4		
		79.8	8769.2		
	MXene-xanthan	121.1	17397.9	21	
	MXene-PEDOT:PSS	24.16	16615.0	34	
	MXene-CNF	112.5	11314.3	12	
	MXene-carbon fiber-PU	170.0	808.0	39	
		31.7	9000.0		
		34.0	9083.3	10	
	MXene-CNF-CNT	34.8	9352.9	40	
		50.0	17083.3		
	MXene-AgNWs-CNF	137.0	20653.0	41	
	CNT-sponge-epoxy	79.2	165.0	42	
	CNT-CNF	27	3093.3	43	
Carbon-based	CNT-WPU	2.3	1093.8	44	
composites	CNT-PEO-cellulose	26.9	2333.3	45	
	CNT-GCC	36.2	15000.0	46	
	CNT-CoFe ₂ o ₄ -PVA	30.0	4526.0	47	

	CNT-PVDF-Co	70.0	1143.0	48
	rGO-PEI	3.5	43.5	49
	rGO/PMMA	28.0	47.4	50
	Graphene papers	246.0	1900.0	51
	Graphene-TPU	58.0	1333.3	52
	Graphene pellet	22.0	12000.0	53
	rGO/PI	11.4	262.5	54
	GP-TiO-epoxy	75.0	3928.6	55
Metal-based composites	CPC-AgNW/textile	9.4	858.3	56
		249.7	12843.9	
		272.7	15946.8	
	MXene-CNF-MMT	236.2	19140.8	
		191.8	18789.4	work
		161.7	18708.7	

 Table S5 Summary of materials thickness and SSE/t of our CMMPs and other previously reported

 shielding materials^{1, 3, 4, 6-8, 11, 12, 24, 34, 40, 57-77}.

Types	Materials	Thickness (mm)	SSE/t (dB cm ² g ⁻¹)	Ref.	
		0.167	1326		
	MXene-CNF	0.074	2154	1	
		0.047	2647		
	MV on a CNE	0.035	4750	2	
	MAene-UNF	0.047	4761	3	
	MXene-AgNWs-CNF	0.040	10901.6	11	
	MXene-CNF 0.035 7029		12		
	MXene-ANF 0.02 11200		4		
	MXene-CNF-CNT	0.038	7874	6	
		0.02137	8081.5		
	MXene-ANF	0.01399	8814.5	7	
		0.01097	9555.7		
		0.041	7595.2		
		0.045	8907.4		
	MXene-AgNWs-ANF	0.05	9317.1	8	
		0.056	8060.9		
		0.091	5379.9		
MXene-based	MXene-ANF	0.04	10014	24 40	
composites		0.031	8008.4		
	MXene-CNF-CNT	0.014	5305.7		
		0.012	5140.8		
		0.017	8875.0		
		0.012	9316.4		
	MXene-carbon fiber	0.086	7723.9	57	
	MXene-PEDOT:PSS	0.13	9169.5	34	
		0.03	8381.5	58	
	MXene-MMT	0.033	6336.2		
		0.045	6254.4		
		0.1	4770	50	
	MXene-PVA	0.3	3867	59	
	MXene-PVA	0.027	9343	60	
	MXene-wood	10	664.8	61	
	MXene-PVA	3.49	4491.8	62	
	MXene-rGO	2	8812.5	63	
	MXene-CNT	3	8246.0	64	
	CNT-PVDF	0.1	1430	65	
Carbon-based	CNT/PEI	2	141	66	
composites	MWCNT-WPU	2.3	2143	67	

	MWCNT-GF-PDMS	15	5556	68
	MWCNT papers	0.6	3583	69
	rGO-PS	2.5	692	70
	Graphene-PEDOT:PSS	1.5	8040	71
	rGO-PU	20	332	72
	Carbon mat	0.29	1362	73
	CNT-CNF	2	2763.9	74
	MWCNT-cellulose	2.5	875.8	75
	Stainless steel	4	27.5	
Matal hand	Ni fiber/PES	2.85	108.7	76
Metal-based	Ni filaments	2.85	164.9	70
composites	Cu foil	0.01	7812	
	CF/Ni/PC	0.31	1376	77
		0.022	10014.6	
		0.024	11095.8	This
		0.027	10619.8	work
		0.03	10366.8	

Parameter/Sample	5 wt%	10 wt%	30 wt%	50 wt%	70 wt%	
Conductivity (S/cm)	586.5	781.5	1480.2	1811.7	2222.5	
Thickness (mm)	0.001	0.002	0.004	0.007	0.010	
Permeability	1					
Length (mm)	22.86					
Width (mm)	10.16					
Boundary conductions	Perfect E					
Mesh quality	Default					
Frequency (GHz)	8.2-12.4					
Step frequency (GHz)	0.1					
Excitation type	Wave port					
Source power (mw)	1					

Table S6 HFSS EMI simulation parameters of the CMMPs.

Notes: Here, the thickness refers to the conductive layer thickness of the CMMPs.

References

- 1 W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.
- 2 Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum and Y. Gogotsi, *Proc. Nati. Acad. Sci*, 2014, **111**, 16676-16681.
- 3 Z. Zhan, Q. Song, Z. Zhou and C. Lu, J. Mater. Chem. C, 2019, 7, 9820-9829.
- 4 F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang and Q. Ma, *Nanoscale*, 2019, **11**, 23382-23391.
- 5 H. Wei, M. Wang, W. Zheng, Z. Jiang and Y. Huang, Ceram. Int, 2020, 46, 6199-6204.
- 6 W. Cao, C. Ma, S. Tan, M. Ma, P. Wan and F. Chen, Nano-Micro Lett., 2019, 11, 72.
- 7 C. Lei, Y. Zhang, D. Liu, K. Wu and Q. Fu, ACS Appl. Mater. Interfaces, 2020, 12, 26485-26495.
- 8 Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei and J. Gu, ACS Nano, 2020, 14, 8368-8382.
- 9 Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen and X. Feng, Nat. Commun., 2019, 10, 2920.
- 10 C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai, Y. Pei, L. Liu and Z. Zhang, *Compos. Part A: Appli. Sci. Manuf.*, 2020, **135**, 105927.
- 11 B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma, C. Liu and C. Shen, Nanoscale, 2021, 13, 2378-2388.
- 12 B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng, B. Wang, D. Zhang, J. Ma and C. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 4895-4905.
- 13 E. Jiao, K. Wu, Y. Liu, M. Lu, Z. Hu, B. Chen, J. Shi and M. Lu, Compos. Part A: Appli. Sci. Manuf., 2021, 146, 106417.
- 14 E. Jiao, K. Wu, Y. Liu, M. Lu, H. Zhang, H. Zheng, C. A. Xu, J. Shi and M. Lu, *Compos. Part* A: Appli. Sci. Manuf., 2021, 143, 106290.
- 15 J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su, T. Zhou, Z. Zheng, C. Lu and X. Zhang, *ACS Nano*, 2020, **14**, 7055-7065.
- 16 Y. Zhang, W. Cheng, W. Tian, J. Lu, L. Song, K. M. Liew, B. Wang and Y. Hu, ACS Appl. Mater. Interfaces, 2020, 12, 6371-6382.
- 17 X. Xu, S. Wu, J. Cui, L. Yang, D. Liu, Y. Zhang, X. Chen, K. Wu and D. Sun, *Cellulose*, 2021, 28, 3311-3325.
- 18 J. Hu, C. Liang, J. Li, C. Lin, Y. Liang and D. Dong, ACS Appl. Mater. Interfaces, 2022, 14, 33817-33828.
- 19 Z. Liu, W. Wang, J. Tan, J. Liu, M. Zhu, B. Zhu and Q. Zhang, J. Mater. Chem. C, 2020, 8, 7170-7180.
- 20 Y. Zhu, X. Zhao, Q. Peng, H. Zheng, F. Xue, P. Li, Z. Xu and X. He, *Nanoscale Advances*, 2021, **3**, 5683-5693.
- 21 Y. Sun, R. Ding, S. Y. Hong, J. Lee, Y. K. Seo, J. D. Nam and J. Suhr, *Chem. Eng. J.*, 2021, **410**, 128348.
- 22 Z. Liu, Y. Zhang, H. B. Zhang, Y. Dai, J. Liu, X. Li and Z. Z. Yu, *J. Mater. Chem. C*, 2020, **8**, 1673-1678.
- 23 H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu and C. Li, Adv. Funct. Mater., 2020, 30, 1906996.
- 24 J. Wang, X. Ma, J. Zhou, F. Du and C. Teng, ACS Nano, 2022, 16, 6700-6711.

- 25 J. H. Woo, N. H. Kim, S. I. Kim, O. K. Park and J. H. Lee, *Compos. Part B: Eng.*, 2020, **199**, 108205.
- 26 H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen and X. Liu, *Adv. Compos. Hybrid Mater.*, 2021, **4**, 505-513.
- 27 Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun, F. M. Gama, Q. Zhang, F. Yao, Z. Yang, H. Luo and Y. Xu, ACS Nano, 2021, 15, 8439-8449.
- 28 Z. Zhou, Q. Song, B. Huang, S. Feng and C. Lu, ACS Nano, 2021, 15, 12405-12417.
- 29 D. Hu, S. Wang, C. Zhang, P. Yi, P. Jiang and X. Huang, Nano Research, 2021, 14, 2837-2845.
- 30 J. Lipton, G. M. Weng, M. Alhabeb, K. Maleski, F. Antonio, J. Kong, Y. Gogotsi and A. D. Taylor, *Nanoscale*, 2019, 11, 20295-20300.
- 31 J. Wei, S. Jia, J. Wei, C. Ma and Z. Shao, ACS Appl. Mater. Interfaces, 2021, 13, 38700-38711.
- 32 W. Tian, A. VahidMohammadi, M. S. Reid, Z. Wang, L. Ouyang, J. Erlandsson, T. Pettersson, L. Wågberg, M. Beidaghi and M. M. Hamedi, *Adv. Mater.*, 2019, **31**, 1902977.
- 33 C. Hu, F. Shen, D. Zhu, H. Zhang, J. Xue and X. Han, Frontiers in Energy Research, 2017, 4.
- 34 R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao and X. Feng, ACS Appl. Mater. Interfaces, 2018, 10, 44787-44795.
- 35 G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi and A. D. Taylor, *Adv. Funct. Mater.*, 2018, 28, 1803360.
- 36 Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi, L. Zhao and J. Wu, Compos. Part A: Appli. Sci. Manuf., 2022, 155, 106809.
- 37 N. Wu, Z. Zeng, N. Kummer, D. Han, R. Zenobi and G. Nyström, *Small Methods*, 2021, 5, 2100889.
- 38 W. Dang, Z. Liu, L. Wang, Y. Chen, M. Qi and Q. Zhang, Nanoscale, 2022, 14, 11305-11315.
- 39 N. Duan, Z. Shi, Z. Wang, B. Zou, C. Zhang, J. Wang, J. Xi, X. Zhang, X. Zhang and G. Wang, *Materials & Design*, 2022, 214, 110382.
- 40 B. Wang, Y. Li, W. Zhang, J. Sun, J. Zhao, Y. Xu, Y. Liu, H. Guo and D. Zhang, *Carbohyd. Polym.*, 2022, **286**, 119302.
- 41 F. Zhang, P. Ren, Z. Guo, J. Wang, Z. Chen, Z. Zong, J. Hu, Y. Jin and F. Ren, *J. Mater. Sci. Technol*, 2022, **129**, 181-189.
- 42 Y. Chen, H. B. Zhang, Y. Yang, M. Wang, A. Cao and Z. Z. Yu, *Adv. Funct. Mater.*, 2016, **26**, 447-455.
- 43 H. Zhang, X. Sun, Z. Heng, Y. Chen, H. Zou and M. Liang, *Ind. Eng. Chem. Res.*, 2018, **57**, 17152-17160.
- 44 Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang and Z. Zhang, *Carbon*, 2016, **96**, 768-777.
- 45 L. Q. Zhang, B. Yang, J. Teng, J. Lei, D. X. Yan, G. J. Zhong and Z. M. Li, *J. Mater. Chem. C*, 2017, **5**, 3130-3138.
- 46 M. Yang, Q. Wei, J. Li, Y. Wang, H. Guo, L. Gao, L. Huang, X. He, Y. Li and Y. Yuan, *Adv. Mater. Interfaces*, 2020, **7**, 1901815.
- 47 G. H. Lim, S. Woo, H. Lee, K. S. Moon, H. Sohn, S. E. Lee and B. Lim, ACS Appl. Mater. Interfaces, 2017, 9, 40628-40637.
- 48 X. Li, S. Zeng, S. E, L. Liang, Z. Bai, Y. Zhou, B. Zhao and R. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 40789-40799.

- 49 J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. g. Zheng, ACS Appl. Mater. Interfaces, 2013, 5, 2677-2684.
- 50 H. B. Zhang, Q. Yan, W. G. Zheng, Z. He and Z. Z. Yu, ACS Appl. Mater. Interfaces, 2011, 3, 918-924.
- 51 W. L. Song, L. Z. Fan, M. S. Cao, M. M. Lu, C. Y. Wang, J. Wang, T. T. Chen, Y. Li, Z. L. Hou, J. Liu and Y. P. Sun, J. Mater. Chem. C, 2014, 2, 5057-5064.
- 52 B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei and W. Zheng, Carbon, 2017, 113, 55-62.
- 53 L. Zhang, N. T. Alvarez, M. Zhang, M. Haase, R. Malik, D. Mast and V. Shanov, *Carbon*, 2015, **82**, 353-359.
- 54 Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, *RSC Advances*, 2015, **5**, 24342-24351.
- 55 A. Kumar, R. Anant, K. Kumar, S. S. Chauhan, S. Kumar and R. Kumar, *RSC Advances*, 2016, 6, 113405-113414.
- 56 L. C. Jia, G. Zhang, L. Xu, W. J. Sun, G. J. Zhong, J. Lei, D. X. Yan and Z. M. Li, ACS Appl. Mater. Interfaces, 2019, 11, 1680-1688.
- 57 K. Wang, C. Chen, Q. Zheng, J. Xiong, H. Liu, L. Yang, Y. Chen and H. Li, *Carbon*, 2022, **197**, 87-97.
- 58 L. Li, Y. Cao, X. Liu, J. Wang, Y. Yang and W. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 27350-27360.
- 59 H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang and L. Cheng, *ACS Appl. Mater. Interfaces*, 2019, **11**, 10198-10207.
- 60 X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu and S. Guo, *Chem. Eng. J.*, 2020, **380**, 122475.
- 61 M. Zhu, X. Yan, H. Xu, Y. Xu and L. Kong, Carbon, 2021, 182, 806-814.
- 62 Z. Guo, Y. Li, P. Jin, T. Zhang, Y. Zhao, Y. Ai, H. Xiu, Q. Zhang and Q. Fu, *Polymer*, 2021, 230, 124101.
- 63 S. Zhao, H. B. Zhang, J. Q. Luo, Q. W. Wang, B. Xu, S. Hong and Z. Z. Yu, ACS Nano, 2018, 12, 11193-11202.
- 64 P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.-K. Kim, S. M. Hong, M. Han, Y. Gogotsi and C. M. Koo, ACS Appl. Mater. Interfaces, 2019, 11, 38046-38054.
- 65 B. Zhao, C. Zhao, R. Li, S. M. Hamidinejad and C. B. Park, ACS Appl. Mater. Interfaces, 2017, 9, 20873-20884.
- 66 D. Feng, Q. Wang, D. Xu and P. Liu, Compos. Sci. Technol., 2019, 182, 107753.
- 67 Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou and Z. Zhang, Adv. Funct. Mater., 2016, 26, 303-310.
- 68 X. Sun, X. Liu, X. Shen, Y. Wu, Z. Wang and J. K. Kim, *Compos. Part A: Appli. Sci. Manuf.*, 2016, **85**, 199-206.
- 69 A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B. P. Singh, A. P. Singh, S. K. Dhawan and S. R. Dhakate, *ACS Appl. Mater. Interfaces*, 2016, 8, 10600-10608.
- 70 D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang and Z. M. Li, Adv. Funct. Mater., 2015, 25, 559-566.
- 71 Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue and J. K. Kim, ACS Appl. Mater. Interfaces, 2017, 9, 9059-9069.
- 72 B. Shen, Y. Li, W. Zhai and W. Zheng, ACS Appl. Mater. Interfaces, 2016, 8, 8050-8057.

- 73 X. Hong and D. D. L. Chung, Carbon, 2017, 111, 529-537.
- 74 G. Zhu, L. Giraldo Isaza, B. Huang and A. Dufresne, ACS Sustainable Chemistry & Engineering, 2022, 10, 2397-2408.
- 75 H. D. Huang, C. Y. Liu, D. Zhou, X. Jiang, G. J. Zhong, D. X. Yan and Z. M. Li, *J. Mater. Chem. A*, 2015, **3**, 4983-4991.
- 76 F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo and Y. Gogotsi, *Science*, 2016, **353**, 1137-1140.
- 77 D. Xing, L. Lu, K. S. Teh, Z. Wan, Y. Xie and Y. Tang, Carbon, 2018, 132, 32-41.