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Figure S1. Flow chart describing the procedure for calculating GB diffusivity.
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Figure S2. Migration of two 211(311)/[01-1] tilt GBs and their subsequent annihilation during NPT annealing at 400 K. a) Color map showing the GB locations vs time based on the
atomic potential energies. b) Snapshots during NPT annealing at selected times. Red indicates high potential energy and blue represents low potential energy.
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Figure S3. Change in calculated diffusivity when the identity of GB atoms are updated every 0.01 ns instead of every 0.1 ns. On average, GB diffusivity increases by 40% when the
more frequent sampling rate of 0.01 ns is used. As a result, 0.1ns sampling rate is chosen since it does not alter conclusions of the current study and computational cost is less
expensive.
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Figure S4. Polycrystalline diffusivity as predicted by 3 models that make different assumptions about GB orientation. Schematic a-c show the Hart model (GB parallel with 1-D
diffusion), Maxwell-Garnet model (GB normal to 1-D diffusion), Belova & Murch 2D grain model (relative to 1-D diffusion, both normal and parallel GBs are present) respectively.
Schematic d-g display Li Polycrystalline diffusivity as predicted by 4 models that make different assumptions about GB orientation. The Hart model, Maxwell-Garnet models, 2D grain
model, and Chen’s model are used to predict the polycrystalline diffusivity at (d) 250K, (e) 300K, (f) 350K, and (g) 400K, respectively. The calculation results of the Hart model are
shown with the orange line, those of the Maxwell-Garnet models are shown with blue, purple, brown lines, the Generic 2D grain model with a green line, and the Chen model with
pink lines. 3 different pink lines correspond to different assumptions on the triple-junction diffusivity. The orange shaded area represents the range of polycrystalline diffusivities
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from the Hart model, assuming scenarios where the largest and smallest GB diffusivities are used, respectively, as inputs to that model.

The Hart equation®? for predicting polycrystalline diffusivity, Dpolycrystal, @ssumes that the 1-D diffusion direction is parallel to the GB
planes (Fig S4a). Dpolyerystal is calculated use the equation below, where f is GB volume fraction and Dgp and Dg,,ix are the self-diffusivity of

the GB and Bulk, respectively.

DPolycrystal = fDgp + (1 = f)Dpuire

f=1-(Q1- %)2 (w: GB width, d: Grain diameter)



In the 1-D Maxwell-Garnet model??3 the diffusion direction is normal to GB planes (Fig S4b). The model was derived to predict the
diffusivity of a composite, where spherical inclusions and the matrix represent grains and GBs in a polycrystal, respectively.* The Maxwell-
Garnet formula for Dpolyerystal is given by:

D — Dgp[(f+d'~fd")Dpuik+fDgp(d'-1)]
Polycrystal D (d'—f)+fDguik

where d’ is the space dimension (d'=1: GBs perpendicular to the diffusion direction, d'=2 or 3: GBs enclosing 2D-circular or 3D-spherical
grains).

The 2D-patterned Grain model of Belova and Murch? falls between the extremes of the two previous models, in that it assumes that
half of the GB planes are oriented perpendicular to the diffusion direction, while the other half are parallel (Fig S4c). In this case Dpolycrystal is

given by:
D _ Dgp(e(1 — €)Dgp + (1 — £ + €) D)
Polycrystal SDBulk + (1 _ S)DGB
e=w/(w+d)

where € is the volume fraction of GBs normal to the diffusion direction.

Lastly, another polycrystalline diffusivity model proposed by Chen and Schuh® is examined. The assumptions in this model include: 1)
bulk grains are enclosed by GBs and triple junctions (TJs), 2) TJs isolate the neighboring GB facets, 3) grain shapes are modelled as Voronoi
polyhedral with a log-normal size distribution, and 4) no dislocation pipes are present in bulk grains. In this model, Dyoycrystal Can be
expressed as,

fT]fGB(DT]_DGB)Z finguzk(Dig—DBuzk)2
frj(Dry—-Dgs)—2(fsp+fry)Pry fig(Dig _DBulk)_3Dig

Dpotycrystat = fryPry + fesDe + feutrDpuir +

where, fsp fr], fig are the volume fraction of GBs, Tls, and intergranular regions, respectively. The volume fraction parameters can be
calculated with following equations,

w w
for = Hop > = 2.9105%

fry = Hy) (g)2 = 25259 (g)2

fig = fe + fry

where Hgg, Hrj are numerical factors determined by the grain shape and grain size distribution. Drj, D4 are the diffusivity of triple
junctions and intergranular regions (GBs and TJs). As Dr; of Li is not available, assumptions are made that Dr; could be 1, or 102, or 10*
times that of Dgg. The equation for D;, reads,

fT]fGB(DT]_DGB)2

1
Y fig fesDes + fT] T+ frj(Drj—Dgg)-2figDry

As shown in Figure S4, the prediction of the 2D grain model and the Maxwell-Garnet d’ = 2,3 models are similar to those of the Hart
model for grain sizes approximately larger than 100 nm. When Dy, is assumed to be smaller than 102 Dgg (speculated to be reasonable guess
given that Dr; is approximately 2-10 times Dgg in Cu®), the model of Chen and Schuh is within the error-bar range of the Hart model except
at the ~10-2 um grain size. Given that various models for Dp,jycrystar Predict comparable values and recent experimental reports have
observed columnar shaped grains’8 in Li following plating, we adopted the Hart equation to predict the polycrystalline diffusivity of the Li
anode in the current study.
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Figure S5. Boundary and initial conditions for the application of Fick’s 2" law to predict the Li concentration in the anode as a function of time and position. x=0 corresponds to the
Li/SE interface, and x=L is an electrochemically non-active anode surface (corresponding to the current collector). The general solution is obtained under the following conditions:

1. There is no concentration gradient at x=L:

ac
x 0 (x=L, t>0).

2. The Liflux, Jyigration, is driven by a constant current density i, at x=0

Jmigration =5 (x=0,t>0).
3. At t=0, the concentration of Li across the anode is constant everywhere and equal to C, = 0.078 mol/cm3:
C = C, (0<x<L, t=0).
The general solution with these boundary and initial conditions is given by:

21t1/2 2(n+1)L—x

. 2nL+x
C(x,t) = Co — iz Ln=ollerfc 20012

2(Dt)1/2Y

+ ierfc

where t is time, x is position, D is the polycrystalline diffusivity, L is anode thickness, and F is Faraday’s constant.



Figure S6. Vacancy formation energies (Ef**) measured at atomic sites in the structural unit of 9 subset tilt GB planes. A black dashed line and o line show the average and standard
deviation of Ef>¢
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of all datapoints, respectively. The bulk Ef*¢ of Liis 0.4 eV/atom.
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Figure S7. Pair distribution functions (PDFs) of 6 randomly chosen Li GBs compared to that of bulk Li. a) bulk Li, b) $5(210)/[001] tilt, c) $11(311)/[01-1] tilt, d) $31(156)/[11-1] tilt, )
55(001)/53.13° twist, f) $11(01-1)/50.48° twist, and g) $13(11-1)/27.8° twist GBs. GB PDFs at 400 K are similar to that of melted bulk Li. (The melting temperature of the force field
is 418 K.)
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Figure S8. Calculated centrosymmetry parameter for 6 Li GBs: a) [001] tilt, b) [01-1] tilt, c) [11-1] tilt, d) [001] twist, e) [01-1] twist, and f) [11-1] twist rotation axes.
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the centrosymmetry values for bulk Li is shown as the black line in each plot.
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Figure S9. Concentration profiles for Liin the anode during discharge as a function of time and anode thickness. In panels a)-e) the current collector (the “Non-Active Anode Surface”)
is positioned at a distance of zero. The grain size is assumed to be 150 um, with a stripping current density of 0.1mA/cm?. Anode thickness include a) 10um, b) 20um, c) 40um, d)
80um, and e) 160um. The depletion time as a function of anode thickness is plotted in f); the discharge capacity and Li utilization fraction as a function of anode thickness are plotted
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different battery performance goals for current density (I, mA/cm?) and discharge capacity (C, mAh/cm?).
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Simulation cell length

Rotation GB plane Misorientation No. atoms in
Axis Angle (°) Lx (A) Ly (A) Lz (A) simulation cell
$25(710) 16.26 98.63 98.63 13.95 12800
513(510) 22.6 71.13 71.13 13.95 6528
517(410) 28.07 57.51 71.89 13.95 5440
$5(310) 36.87 44.11 66.16 13.95 3776
[001] $29(520) 436 75.12 75.12 13.95 7392
$29(730) 46.4 106.23 106.23 13.95 14720
55(210) 53.13 31.19 77.98 13.95 3168
517(530) 61.93 81.33 81.33 13.95 8640
513(320) 67.38 50.29 75.44 13.95 4960
$25(430) 73.74 69.74 69.74 13.95 6396
$33(811) 20.05 80.13 84.99 14.79 9360
519(611) 26.53 60.8 64.49 14.79 5352
527(511) 31.59 51.25 72.48 14.79 5136
59(411) 38.94 41.85 73.97 14.79 4224
511(311) 50.48 32.71 69.39 14.79 3120
5$33(522) 58.99 56.66 60.1 14.79 4680
5$3(211) 70.53 24.16 59.79 14.79 1968
[01-1] 517(322) 86.63 40.67 71.89 14.79 3984
517(433) 93.37 57.51 61 14.79 4776
$3(111) 109.47 34.17 60.4 14.79 2878
5$33(455) 121.01 80.13 84.99 14.79 9495
511(233) 129.52 46.26 65.43 14.79 4176
59(122) 141.06 29.59 62.77 14.79 2600
$27(255) 148.41 72.48 76.88 14.79 7772
5$19(133) 153.47 42.99 60.8 14.79 3648
$33(144) 159.95 56.66 60.1 14.79 4727
$31(156) 17.9 95.12 82.37 18.12 13320
$21(145) 21.79 78.29 67.8 18.12 9000
[11-1] 513(134) 27.8 61.6 71.13 18.12 7344
57(123) 38.21 67.8 65.24 18.12 7452
5$19(235) 46.83 74.47 64.49 18.12 8064

Table S1. Details for the symmetric tilt grain boundaries investigated in this study.
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Rotation

Misorientation

Simulation cell length

No. of atoms in

Axis GB plane Angle (°) Lx (A) Ly (A) Lz (A) simulation cell
$25(001) 16.26 49.32 62.77 49.32 14112
$13(001) 22.62 35.56 62.77 35.56 7344
$17(001) 28.07 43.13 62.77 43.13 10782
$5(001) 36.87 33.08 62.77 33.08 6336
[001] $29(001) 43.6 37.56 62.77 37.56 8176
$29(001) 46.4 53.12 62.77 53.12 16352
$5(001) 53.13 23.39 62.77 23.39 3168
$17(001) 61.93 40.67 62.77 40.67 9584
$13(001) 67.38 37.72 62.77 37.72 8262
$25(001) 73.74 52.31 62.77 52.31 15876
$33(01-1) 20.05 80.13 64.11 56.66 27456
$19(01-1) 26.53 60.8 64.11 42.99 15808
$27(01-1) 31.59 51.25 64.11 36.24 11232
$9(01-1) 38.94 41.85 64.11 29.59 7488
$11(01-1) 50.48 32.71 64.11 23.13 4560
$33(01-1) 58.99 56.66 64.11 40.06 13728
$3(01-1) 70.53 24.16 64.11 17.08 2496
(01-1] $17(01-1) 86.63 40.67 64.11 28.76 7072
$17(01-1) 93.37 57.51 64.11 40.67 14144
$3(01-1) 109.47 25.63 64.11 18.12 2808
233(01-1) 121.01 80.13 64.11 56.66 27456
$11(01-1) 129.52 46.26 64.11 32.71 9120
$9(01-1) 141.06 44.38 64.11 31.38 8424
$27(01-1) 148.41 72.48 64.11 51.25 22464
$19(01-1) 153.47 42.99 64.11 30.4 7904
$33(01-1) 159.95 56.66 64.11 40.06 13728
$31(11-1) 17.9 95.12 60.4 54.92 29160
$21(11-1) 21.79 78.29 60.4 45.2 19821
[11-1] 213(11-1) 27.8 61.6 60.4 35.56 12293
57(11-1) 38.21 67.8 60.4 39.14 14936
$19(11-1) 46.83 74.47 60.4 42.99 18032

Table S2. Structural parameters for twist grain boundaries investigated in this study.
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Table S4. Calculated y surfaces for twist grain boundaries.
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a) [001] tilt\Temperature (K) 250 300 350 400
$5(210) 7.2 7.8 9.5 16.2
55(310) 8.2 8.5 11.4 18.1
513(320) 8.9 9.6 10.9 13.5
517(410) 8.1 9.3 11.6 16.3
525(430) 10.2 9.5 10.2 12.7
513(510) 8.9 9.3 11 15
5$29(520) 8.8 9.1 12.6 18.9
517(530) 8.9 9.4 10.5 18.4
5$25(710) 10.8 11.2 12.6 14.3
529(730) 8.3 9 13.6 19.8

b) [01-1] tilt\Temperature (K) 250 300 350 400
59(122) 12.7 14.3 12.5 15.6
$19(133) 13 13.2 13.6 17
$33(144) 13.7 14.1 13.5 16.3
$27(255) 11.8 12.7 14.2 18
$11(311) 14.8 12.7 13.3 15.9
517(322) 13.2 13.3 13.1 13.7
59(411) 6.6 7 13 17
>17(433) 16 14.1 14.5 16.2
$33(455) 17.1 14.9 14.3 14.9
527(511) 8.7 11.5 14.2 17
$33(522) 13 13 12.9 13.4
519(611) 11.6 12.5 14.4 17.6
$33(811) 12.1 12.3 13.2 16.2

c) [11-1] tilt\Temperature (K) 250 300 350 400
57(123) 12.7 12.7 13.4 16.6
513(134) 12.3 13.1 12.6 16.6
5$21(145) 11.8 12.6 12.8 17.7
531(156) 10.7 10.9 12.9 17.1
519(235) 13.4 14.4 13.4 14.4

d) [001] twist\Temperature (K) 250 300 350 400
55(001)/53.13° 14.7 15.3 15.4 17.0
$5(001)/36.87° 15.2 15.5 15.5 18.9
513(001)/67.38° 15.5 15.3 15.2 18.0
517(001)/28.07° 14.2 14.3 14.9 19.8
525(001)/73.74° 16.6 15.9 16.1 16.9
$13(001)/22.62° 15.4 15.4 15.2 17.4
529(001)/43.6° 14.5 14.8 15.6 20.2
517(001)/61.93° 13.7 14.0 14.6 19.2
525(001)/16.26° 16.2 15.5 15.6 17.2
529(001)/46.4° 14.6 14.8 15.3 21.8
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e) [01-1] twist\Temperature (K) 250 300 350 400

519(01-1)/153.47° 6.6 6.8 7.2 9.1
533(01-1)/159.95° 6.5 6.7 7.2 9.4
511(01-1)/129.52° 8.8 8.7 8.3 11.2
527(01-1)/148.41° 6.8 7.4 8.0 9.7
$11(01-1)/50.48° 7.6 7.9 7.9 9.3
>17(01-1)/86.63° 5.9 6.3 6.6 8.7
$17(01-1)/93.37° 6.2 6.8 7.2 7.9
533(01-1)/121.01° 9.3 10.0 9.8 12.2
$27(01-1)/31.59° 7.3 7.6 7.7 9.4
533(01-1)/58.99° 7.8 8.1 8.3 9.8
519(01-1)/26.53° 6.5 6.9 7.7 8.8
533(01-1)/20.05° 6.7 6.9 7.3 9.0

f) [11-1] twist\Temperature (K) 250 300 350 400
$7(11-1)/38.21° 10.7 10.9 11.2 14.4
513(11-1)/27.8° 9.9 10.3 11.4 19.7
521(11-1)/21.79° 9.8 10.6 12.6 17.9
531(11-1)/17.9° 10.8 11.4 12.5 20.4
$19(11-1)/46.83° 10.1 11.3 11.9 14.7

g) Average GB width\Temperature (K) 250 300 350 400
10.9 11.2 12 15.3

Table S5. Calculated GB widths (A) of (a)-(c) tilt GBs, (d)-(f) twist GBs, and (g) the average across all GBs as a function of temperature. The value at each temperature is sampled every
0.1 ns and time-averaged.
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Table S6. Calculated mean squared displacements for diffusion in symmetric tilt GBs.
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Table S7. Calculated mean squared displacements for diffusion in twist GBs.
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Fit to 250, 300, and 350 K Fit to 300, 350, and 400 K

Tilt GB E. (eV) Do (cm?/s) R? E. (eV) Do (cm?/s) R?
35(210) 0.18 3.66%10% 0.83 0.41 1.28 0.96
$5(310) 0.18 1.72E%10° 0.99 0.23 8.77%10° 0.99
213(320) 0.1 2.40*10° 0.95 0.23 2.80*10° 0.92
317(410) 0.25 1.25%107 1 0.27 2.39*%107 1
325(430) 0.07 6.95%10 0.96 0.16 2.49*10" 0.92
Y13(510) 0.2 1.17*10° 0.88 0.34 1.38*10 1
329(520) 0.13 2.71*10% 0.96 0.22 6.93%10° 0.97
$17(530) 0.05 6.36%10° 0.61 0.3 5.41%107 0.86
25(710) 0.13 4.14%10° 0.93 0.28 1.06*107 0.94
29(730) 0.16 6.78+10% 0.95 0.24 1.48*107 0.99
$9(122) 0.09 3.64*10° 0.89 0.22 5.33%10° 0.94
$19(133) 0.14 2.40%10% 0.95 0.25 1.55%107 0.96
y33(144) 0.13 1.89*%10 0.96 0.25 1.47*107 0.95
227(255) 0.1 6.85*10° 0.94 0.22 6.44*10°3 0.93
211(311) 0.15 5.36*10* 1 0.19 2.58*10° 0.96
$17(322) 0.11 1.09*10° 0.87 0.38 1.92*10 0.82
T9(411) 0.3 3.87*107 0.5 0.53 7.51*10" 0.44
y17(433) 0.14 6.04*10° 0.89 0.38 2.60*1071 0.89
¥33(455) 0.12 2.67*10° 0.97 0.3 2.08*102 0.86
y27(511) 0.28 4.93%107 0.94 0.23 8.86%103 0.99
¥33(522) 0.17 3.72%10% 0.99 0.24 5.09%10° 0.98
$19(611) 0.13 2.92*10* 1 0.2 2.73*%103 0.97
y33(811) 0.12 1.10*10* 0.99 0.2 2.40*10°3 0.95
27(123) 0.12 6.05*10° 0.96 0.29 4.12%107 0.86
213(134) 0.09 3.10*10° 0.93 0.27 2.75%10% 0.86
321(145) 0.14 2.12*10% 0.88 0.31 8.16%107 0.97
231(156) 0.15 2.47*10* 0.92 0.28 3.20*107 0.97
319(235) 0.11 1.96*10° 0.96 0.25 4.30%1073 0.89
Bulk(cal) 0.48 2.18*10°3 1 0.48 1

Table S8. Arrhenius parameters for tilt GBs calculated using fits to low temperature data (250K, 300K, 350K) and high temperature data (300K, 350K, 400K). The calculated values
for diffusion in the bulk via a vacancy mechanism are presented for comparison.
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Fit to 250, 300, and 350 K Fit to 300, 350, and 400 K
Twist GB E. (eV) Do (cm?/s) R? E. (eV) Do (cm?/s) R?
$5(001)/53.13° 0.1 5.71%10° 0.83 0.51 1.75*10 0.63
¥5(001)/36.87° 0.12 1.24*10° 0.82 0.53 4.23*10 0.66
313(001)/67.38° 0.18 7.33*10* 0.97 0.32 1.02*10 0.94
317(001)/28.07° 0.18 6.49%10" 0.96 0.36 3.44%101 0.92
325(001)/73.74° 0.14 1.25%10% 0.97 0.26 1.05*1072 0.93
313(001)/22.62° 0.17 3.64*10" 0.93 0.33 1.13*10 0.95
329(001)/43.6° 0.17 4.33*10" 0.96 0.36 3.93*101 0.9
317(001)/61.93° 0.18 5.35%10 0.95 0.36 3.48%101 0.92
325(001)/16.26° 0.14 1.12*10% 0.98 0.26 1.01*107 0.93
329(001)/46.4° 0.18 5.54*10" 0.96 0.36 4.47*10 0.9
319(01-1)/153.47° 0.17 3.36*10* 0.94 0.25 4.77*%10° 1
333(01-1)/159.95° 0.18 3.63*10* 0.89 0.29 1.83*1072 1
11(01-1)/129.52° 0.11 7.44%10° 0.83 0.35 5.07%102 0.88
$27(01-1)/148.41° 0.12 7.55*10° 1 0.17 3.74*10% 0.97
311(01-1)/50.48° 0.07 1.81*10° 0.88 0.32 1.70*1072 0.79
317(01-1)/86.63° 0.14 4.30*10° 0.9 0.27 4.56*10° 0.98
317(01-1)/93.37° 0.15 7.96*10° 0.86 0.29 1.11*107 1
333(01-1)/121.01° 0.13 3.53*10° 0.95 0.21 7.74%10* 0.99
327(01-1)/31.59° 0.12 7.27*10° 1 0.17 3.99%10* 0.97
333(01-1)/58.99° 0.11 4.28*10° 0.99 0.17 3.26%10* 0.98
319(01-1)/26.53° 0.19 6.06*10" 0.99 0.23 3.07*10° 1
333(01-1)/20.05° 0.18 3.59*10* 0.92 0.29 1.50*10°2 1
37(11-1)/38.21° 0.18 5.13*10* 0.98 0.27 1.60*1072 0.97
$13(11-1)/27.8° 0.17 9.03*10* 1 0.23 1.15*10° 0.95
321(11-1)/21.79° 0.28 4.75*107 0.99 0.24 1.50*10°2 1
$31(11-1)/17.9° 0.13 4.26*10* 1 0.19 2.96%10° 0.97
319(11-1)/46.83° 0.12 3.53*10° 0.99 0.2 6.30*10 0.95
Bulk(cal) 0.48 2.18*103 1 0.48 2.18*10° 1

Table S9. Arrhenius parameters for twist GBs calculated using fits to low temperature data (250K, 300K, 350K) and high temperature data (300K, 350K, 400K). The calculated values
for diffusion in the bulk via a vacancy mechanism are presented for comparison.
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Diffusivity without added Diffusivity with added

GB System vacancies (cm?/s) vacancies (cm?/s)
55(210) 2.2%107 4.6%107
$5(310) 1.3*10% 1.3*10°

313(320) 5.1*107 6.9%10"
517(530) 6.2*107 3.3*107
225(710) 2.1*107 2.1*¥107
529(730) 1.2*%106 1.3*10°®

Table $10. GB Diffusivity with and without added GB vacancies at 300 K.
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Temperature(K)
D_Tot
D X
DY
DZ

Table S11. Total and directionally-resolved GB diffusivity (cm?/s) averaged over all GBs. D_Y is the diffusivity resolved along the direction perpendicular to the GB planes (i.e., y
direction) and D_X and D_Z are the diffusivities within the GB planes (i.e., x and z directions). The right figure plots the average diffusivities in an Arrhenius plot.

250
2.6*107
1.8*107
1.4*107
4.7*107

300
6.2*107
5.4*107
3.5*107
9.7*107

350
1.9*10°
1.9%10°
1.2*10°
2.5*10

400
8.5%10®
9.4*10°®
5.9%106
1.0*10°

23

T(K)
400 350 300

2.5 3.0 3.5

1000/T(1/K)

® o o o

D_Tot
D X
DY
D Z



Tilt GB D_Tot (cm?/s) D_X (cm?/s) D_Y (cm?/s) D_Z (cm?/s)
¥5(210) 2.2*107 1.3*107 1.4¥107 3.9%107
35(310) 1.3*10° 1.0*10° 7.0¥107 2.2%10°
¥13(320) 5.1*107 1.9*107 9.8%10°® 1.2%10°
y17(410) 7.9%107 7.0%107 5.9%107 1.1%10°
>25(430) 4.9*107 2.0*107 1.5*107 1.1*10°6
¥13(510) 2.7*107 2.6*107 2.4%107 3.2%107
¥29(520) 1.7*10° 1.0*10°¢ 6.3%107 3.3%10
¥17(530) 6.2%107 1.5*107 1.6%107 1.5%10°
225(710) 2.1*107 2.0*107 2.0%107 2.2*¥107
329(730) 1.2*10° 7.0%107 5.3*107 2.5%10%
¥9(122) 1.0*10° 5.6*107 3.4%107 2.2%106
¥19(133) 1.0*10° 8.5%107 5.9%107 1.6%10°
Y33(144) 8.7*107 7.3¥107 5.7*107 1.3*10°
>27(255) 1.3*10° 1.1*10°® 6.1¥107 2.1%106
>11(311) 1.5%10° 2.1*10° 1.0*106 1.5%106
¥17(322) 1.1*107 1.3*107 1.1*107 1.0%107
y9(411) 8.3*10°® 8.8*10°8 7.4%10°8 8.8%10%
y17(433) 1.6*107 1.4%107 1.7*107 1.5%107
¥ 33(455) 2.0*107 1.5%107 2.4%107 2.0%107
227(511) 1.3*10° 1.2*10°° 1.1*10¢ 1.7%10°¢
¥33(522) 4.9*107 5.9%107 3.1%107 5 8%107
319(611) 15%10° 13*10° 1.4%10° 2.0%10°
¥33(811) 1.1*10° 4.0*107 1.0%10°¢ 1.9%10°
y7(123) 5.9*107 9.2*%108 1.3*107 1.6%10°
¥13(134) 8.6%107 8.8*10°® 8.4%10°8 2 4%10°
¥21(145) 5.8*¥107 8.7*108 8.2%108 1.6%10°
231(156) 6.6*107 1.0*107 8.0%10°8 1.8*10°¢
219(235) 2.8*107 8.5*10°% 1.4*107 6.1%107

Table S12. Calculated GB diffusivity in tilt GBs at 300 K resolved normal to the GB plane (y direction) and within the GB plane (x and z directions). D_Tot represents the GB diffusivity
averaged inx,y, and z.
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Twist GB D_Tot (cm?/s) D_X (cm?/s) D_Y (cm?/s) D_Z (cm?/s)
$5(001)/53.13° 8.0*%108 7.9%108 8.0*108 8.0*108
¥5(001)/36.87° 7.9*¥10°8 7.9*10 8.2*108 7.7%¥108
¥13(001)/67.38° 4.8%107 5.4*%107 4.1*107 4.9*107
¥17(001)/28.07° 4.3*107 4.6*107 3.8*%107 4.6*107
$25(001)/73.74° 5.1*%107 5.3*107 4.6%107 5.3*%107
¥13(001)/22.62° 4.1*107 4.4*107 3.5*%107 4.4*107
¥29(001)/43.6° 4.4*%107 4.6*107 4.0*107 4.5%107
¥17(001)/61.93° 4.4*%107 4.7*107 3.8*%107 4.7*107
¥25(001)/16.26° 5.1*107 5.4*%107 4.6*107 5.3*107
329(001)/46.4° 4.5%107 4.7%107 4.1%107 4.7%107
¥19(01-1)/153.47° 3.0*%107 3.5*%107 1.0*107 4.5%107
¥33(01-1)/159.95° 2.1*107 2.2*¥107 9.4*108 3.2*107
¥11(01-1)/129.52° 8.5*%108 8.9%108 6.5*%108 1.0*107
¥27(01-1)/148.41° 6.6¥107 9.8*%107 1.7*107 8.3*107
¥11(01-1)/50.48° 8.9*%108 1.1*107 6.2*¥108 9.5*%108
¥17(01-1)/86.63° 1.6*107 2.0*%107 7.2*¥108 2.0*107
¥17(01-1)/93.37° 1.5*%107 1.8*107 7.6*%108 2.1*107
¥33(01-1)/121.01° 2.2*¥107 2.4%107 7.8*¥108 3.4*%107
$27(01-1)/31.59° 6.0%10°7 7.8%107 1.5%107 8.8*107
$33(01-1)/58.99° 4.9*107 8.1*¥107 9.4*10°8 5.6%107
$19(01-1)/26.53° 4.0*107 5.6%107 1.3*107 5.0%107
¥33(01-1)/20.05° 2.3*107 3.3*107 1.0*107 2.5*%107
Y7(11-1)/38.21° 4.8%107 5.9%107 2.6%107 5.8*%107
¥13(11-1)/27.8° 1.5*%10° 1.8*%10° 7.5*%107 1.8*%10°
$21(11-1)/21.79° 1.0*10° 1.0¥10°® 5.0*107 1.5*%10°¢
¥31(11-1)/17.9° 2.3*10°° 2.8*%10°6 1.3*10° 2.8*%10°6
¥19(11-1)/46.83° 3.0*107 3.6*107 1.8*%107 3.5*%107

Table S13. Calculated GB diffusivity in twist GBs at 300 K resolved normal to the GB plane (y direction) and within the GB plane (x and z directions). D_Tot represents the GB diffusivity
averaged in x,y, and z.
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