Supplementary Information

Internal Electric Fields in Asymmetric Single-layer Lattices

 for Enhancing Photocatalytic Solar-to-Hydrogen Efficiency
${ }^{\text {a }}$ Institute of Atomic and Molecular Physics, Jilin University, 130012 Changchun, China
b School of Physics and Optoelectronic Engineering, Ludong University, 26425 Yantai, China
${ }^{\text {c }}$ Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, China

*Corresponding author. Email: shi ying@jlu.edu.cn (Y. Shi); ycl@ldu.edu.cn (C.L. Yang)

Fig. S1 The flow diagram of stability evaluation.

Fig. S2 The enthalpies of formation $E_{\mathrm{f}}(\mathrm{eV} /$ atom $)$ of 22 selected $\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{XY}$ monolayers.

Fig. S3 The phonon spectrum of 18 unstable $\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{XY}$ monolayers.

Fig. S4 The ab initio molecular dynamics (AIMD) simulations at 500 K for (a)
$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$, (b) $\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}$, (c) $\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$ and (d) $\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$ monolayers, respectively.

Fig. S5 Polar diagrams of (a) Young's modulus $Y(\theta)$ and (b) Poisson's ratio $v(\theta)$ for $\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}, \mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}, \mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$ and $\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$ monolayers.

Fig. S6 Band-decomposed charge density of the CBM and VBM for $M S i_{2} \mathrm{~N}_{4}$, $\mathrm{MSi}{ }_{2} \mathrm{~N}_{3} \mathrm{P}$ and $\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{As}$ monolayers, respectively.

Fig. S7 The calculated absorption coefficients of $\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{Y}$ monolayers and $\mathrm{MSi}_{2} \mathrm{~N}_{4}$ monolayers by HSE06 functional.

Fig. S8 (a)-(d) The imaginary dielectric function ε_{2} and the oscillator strength λ as a function of photon energy for $\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{Y}$ monolayers. The red line indicates the direct bandgap calcualted by GW mothod.

Table S1. The calculated structural properties, including lattice constant (a), bond length $\left(d_{S i-X / Y}^{\text {out }}\right.$ and $d_{M-X / Y}^{\text {in }}$), and inner-layer height $\left(d_{S i-X / Y}^{i n}\right)$ for $\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{XY}$ monolayers.

Monolayers	M	$\begin{gathered} a \\ (\AA) \end{gathered}$	$d_{S i-X}^{u n u}$ (\AA)	$d_{S i-Y}^{u c}$ (\AA)	d_{M-X}^{m} (\AA)	$d_{M-Y}{ }^{\pi r}$ (\AA)	$\begin{gathered} h_{X-Y}{ }^{+\tau \tau} \\ (\AA \AA) \end{gathered}$	Distortion (Y/N)
$\mathrm{MSi}_{2} \mathrm{~N}_{4}$	Mo	2.901	1.751	1.751	2.087	2.087	2.490	N
	W	2.905	1.752	1.752	2.094	2.094	2.506	N
$\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	Mo	2.967	1.745	2.227	2.107	2.358	2.846	N
	W	2.974	1.746	2.222	2.117	2.367	2.868	N
$\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	Mo	2.982	1.746	2.337	2.106	2.463	2.973	N
	W	2.988	1.747	2.331	2.116	2.472	2.996	N
$\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{~S}$	Mo	2.938	1.748	2.239	2.094	2.429	2.966	N
	W	2.937	1.748	2.269	2.102	2.432	2.986	N
$\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{Se}$	Mo	2.959	1.749	2.446	2.095	2.542	3.094	N
	W	2.959	1.747	2.516	2.103	2.540	3.106	N
$\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{Te}$	Mo	3.000	1.749	2.695	2.104	2.726	3.298	N
	W	3.003	1.749	2.735	2.114	2.737	3.327	N
MSi ${ }_{2} \mathrm{~N}_{2} \mathrm{PAs}$	Mo	3.051	2.230	2.353	2.363	2.488	3.333	N
	W	3.053	2.229	2.353	2.375	2.499	3.363	N
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{PS}$	Mo	3.007	2.248	2.200	$2 . .363$	2.448	3.329	N
	W	3.011	2.252	2.216	2.376	2.449	3.344	N
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{PSe}$	Mo	3.034	2.241	2.396	2.345	2.579	3.452	N
	W	3.040	2.245	2.424	2.361	2.584	3.475	N
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{PTe}$	Mo	3.072	2.237	3.854	2.351	2.751	3.646	Y
	W	3.091	2.236	3.881	2.366	2.736	3.628	Y
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{AsS}$	Mo	3.025	2.371	2.198	2.493	2.405	3.432	N
	W	3.032	2.375	2.218	2.501	2.418	3.453	N
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{AsSe}$	Mo	3.055	2.367	2.398	2.463	2.543	3.551	N
	W	3.059	2.370	2.432	2.476	2.552	3.578	N
$\underset{\mathrm{e}}{\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{AsT}}$	Mo	3.092	2.363	3.871	2.460	2.723	3.749	Y
	W	3.028	2.379	2.760	2.452	3.150	4.339	Y
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{SSe}$	Mo	3.023	2.217	2.440	2.327	2.637	3.515	N
	W	3.021	2.237	2.485	2.355	2.619	3.536	N
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{STe}$	Mo	3.072	2.199	3.743	2.348	2.776	3.675	Y
	W	3.075	2.218	3.735	2.372	2.768	3.697	Y
$\mathrm{MSi}_{2} \mathrm{~N}_{2} \mathrm{SeTe}$	Mo	3.098	2.387	3.619	2.490	2.719	3.780	Y
	W	3.100	2.412	3.799	2.515	2.729	3.826	Y

For a mechanically stable material, the elastic constants should fulfill the BornHuang stability criteria ${ }^{1}: C_{11}>\left|C_{12}\right|, C_{11} C_{22}-C_{12}{ }^{2}>0, C_{66}>0$. Considering that Janus $\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$ belongs to $C_{3 \mathrm{v}}$ point group, thus $C_{11}=C_{22}$ and $C_{66}=0.5\left(C_{11}-C_{12}\right)$, the criterion turns out to be only $C_{11}>\left|C_{12}\right|$. As shown in Table S3, the calculated C_{11} is larger than C_{12} suggesting that four $\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{Y}$ monolayers are mechanically stable. To evaluate the in-plane stiffness, we calculated Young's modulus $Y(\theta)$ and Poisson's ratio $v(\theta)$ along the in-plane θ, which is given as follow:

$$
Y(\theta)=\frac{C_{11} C_{22}-C_{12}^{2}}{C_{11} \sin ^{4} \theta+A \sin ^{2} \theta \cos ^{2} \theta+C_{22} \cos ^{4} \theta}
$$

$$
\begin{equation*}
v(\theta)=\frac{C_{12} \sin ^{4} \theta-B \sin ^{2} \theta \cos ^{2} \theta+C_{12} \cos ^{4} \theta}{C_{11} \sin ^{4} \theta+A \sin ^{2} \theta \cos ^{2} \theta+C_{22} \cos ^{4} \theta} \tag{1}
\end{equation*}
$$

where $A=\left(C_{11} C_{22}-C_{12}{ }^{2}\right) / C_{66}-2 C_{12}$ and $B=C_{11}+C_{22}-\left(C_{11} C_{22}-C_{12}{ }^{2}\right) / C_{66}$.

Table S2. The obtained in-plane elastic constants C_{11}, C_{22}, C_{12} and C_{66} of four monolayers.

Monolayers	$C_{11}(\mathrm{~N} / \mathrm{m})$	$C_{22}(\mathrm{~N} / \mathrm{m})$	$C_{12}(\mathrm{~N} / \mathrm{m})$	$C_{66}(\mathrm{~N} / \mathrm{m})$
$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	331.0	331.0	77.6	126.7
$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	276.4	276.4	95.6	90.4
$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	341.8	341.8	76.7	132.5
$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	274.1	274.1	100.6	86.8

Table S3. The calculated band gap at HSE06 level $\left(E_{g}\right)$, the potentials of photogenerated electrons/holes $\left(U_{\mathrm{e}} / U_{\mathrm{h}}\right)$, dipole moments (μ) and electrostatic potential difference $(\Delta \Phi)$ for four stable monolayers.
Monolayers $\quad E_{g}(\mathrm{eV}) \quad U_{\mathrm{e}}(\mathrm{eV}) \quad U_{\mathrm{h}}(\mathrm{eV}) \quad \mu($ Debye $) \quad \Delta \Phi(\mathrm{eV})$

$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	0.96	1.37	1.71	0.43	2.12
$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	0.46	1.36	1.65	0.53	2.55
$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	0.79	1.37	1.42	0.40	2.00
$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	0.45	1.37	1.54	0.48	2.46

The Gibbs free energy
The change of Gibbs free energy (ΔG) in water splitting reaction is calculated using the method proposed by Nørskovet et al ${ }^{2}$. The formula can be expressed as:

$$
\begin{equation*}
\Delta G=\Delta E+\Delta E_{Z P E}-T \Delta S \tag{3}
\end{equation*}
$$

where ΔE is the adsorption energy, $\Delta E_{Z P E}$ and ΔS are the differences in the zero-point energy and entropy difference between the adsorbed state and corresponding freestanding state, respectively.
$E_{Z P E}$ could be derived after the frequency calculation by

$$
\begin{equation*}
E_{Z P E}=1 / 2 \sum h v \tag{4}
\end{equation*}
$$

where v represents the vibrational frequency.
Meanwhile, TS is given by

$$
\begin{equation*}
T S=k_{b} T\left[\sum_{K} \ln \left(\frac{1}{1-e^{-h v / k_{b} T}}\right)+\sum_{K} \frac{h v}{k_{b} T}\left(\frac{1}{e^{-h v / k_{b} T}-1}+1\right)\right] \tag{5}
\end{equation*}
$$

where e represents the electron charge, h represents Planck's constant and k_{b} is Boltzmann's constant. Here, T is set to be 298.15 K .

The effect of external potential and pH have been taken into account to evaluate the HER and OER activities. The ΔG for HER process include two steps, which was expressed as:
(1) ${ }^{*}+\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{H}^{*}$
$\Delta G_{1}=G_{H^{*}}-\frac{1}{2} G_{H_{2}}-G_{*}+\Delta G_{U}+\Delta G_{p H}$
$=\Delta E_{H}+\Delta E_{Z P E(H)}-T \Delta S_{H}+\Delta G_{U}+\Delta G_{p H}$

$$
\begin{equation*}
=\Delta G_{H} \tag{7}
\end{equation*}
$$

(2) $H^{*}+H^{+}+e^{-} \rightarrow *+H_{2}(g)$
$\Delta G_{2}=G_{*}+\frac{1}{2} G_{H_{2}}-G_{H^{*}}+\Delta G_{U}+\Delta G_{p H}$
$=-\left(\Delta E_{H}+\Delta E_{Z P E(H)}-T \Delta S_{H}\right)+\Delta G_{U}+\Delta G_{p H}$
$=-\Delta G_{H}+2 \Delta G_{U}+2 \Delta G_{p H}$
Meanwhile, the OER can be decomposed into four elementary steps. The ΔG for each step was calculated as follows:

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}(l)+* \rightarrow \mathrm{OH}^{*}+\mathrm{H}^{+}+e^{-} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \Delta G_{3}=G_{O H} *+\frac{1}{2} G_{H_{2}}-G_{*}-G_{H_{2} \mathrm{O}}+\Delta G_{U}-\Delta G_{p H} \tag{10}\\
& =\Delta E_{O H}+\Delta E_{Z P E(O H)}-T \Delta S_{O H}+\Delta G_{U}-\Delta G_{p H} \\
& =\Delta G_{O H} \tag{11}
\end{align*}
$$

$$
\begin{equation*}
O H^{*} \rightarrow \mathrm{O}^{*}+\mathrm{H}^{+}+e^{-} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \Delta G_{4}=G_{O^{*}}+\frac{1}{2} G_{H_{2}}-G_{O H^{*}}+\Delta G_{U}-\Delta G_{p H} \tag{12}\\
&=\left(\Delta E_{O}+\Delta E_{Z P E(O)}-T \Delta S_{O}+2 \Delta G_{U}-2 \Delta G_{p H}\right)-\left(\Delta E_{O H}+\Delta E_{Z P E(O H)}-T \Delta S_{O H}\right. \\
&\left.G_{U}-\Delta G_{p H}\right)
\end{align*}
$$

$$
\begin{equation*}
=\Delta G_{O}-\Delta G_{O H} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}^{*} \rightarrow \mathrm{OOH}^{*}+\mathrm{H}^{+}+e^{-} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \Delta G_{5}=G_{O O H^{*}}+\frac{1}{2} G_{H_{2}}-G_{O^{*}}-G_{H_{2} \mathrm{O}}+\Delta G_{U}-\Delta G_{p H} \tag{14}\\
&=\left(\Delta E_{O O H}+\Delta E_{Z P E(O O H)}-T \Delta S_{O O H}+3 \Delta G_{U}-3 \Delta G_{p H}\right)-\left(\Delta E_{O}+\Delta E_{Z P E(O)}-\right. \\
&\left.2 \Delta G_{U}-2 \Delta G_{p H}\right)
\end{align*}
$$

$$
\begin{equation*}
=\Delta G_{O O H}-\Delta G_{O} \tag{15}
\end{equation*}
$$

(6)

$$
\mathrm{OOH}^{*} \rightarrow *+\mathrm{O}_{2}(g)+\mathrm{H}^{+}+e^{-}
$$

$\Delta G_{6}=G_{*}+\frac{1}{2} G_{H_{2}}+G_{O_{2}}-G_{O O H}{ }^{*}+\Delta G_{U}-\Delta G_{p H}$
$=\left(4.92+4 \Delta G_{U}-4 \Delta G_{p H}\right)-\left(\Delta E_{O O H}+\Delta E_{Z P E(O O H)}-T \Delta S_{O O H}+3 \Delta G_{U}-3 \Delta G_{p H}\right)$
$=\left(4.92+4 \Delta G_{U}-4 \Delta G_{p H}\right)-\Delta G_{O O H}$
where $\Delta G_{U}\left(\Delta G_{U}=-e U\right)$ denotes extra potential bias provided by an electron in the electrode, where U represents the potential difference from the standard hydrogen electrode potential. $\Delta G_{p H}$ represents the effect of pH on ΔG, which is calculated by $\Delta G_{p H}=k_{b} T \times \ln 10 \times{ }_{\mathrm{pH}}$.

Table S4. The adsorption energies $\Delta E(\mathrm{eV})$ of all adsorbed species on four structures.

Species	$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$
H^{*}	-0.15	-0.84	-0.16	-0.80
OH^{*}	0.86	0.71	0.80	0.63
O^{*}	3.40	3.17	3.30	2.75
OOH^{*}	4.30	4.14	4.23	4.06

Table S5. The zero-point energy $E_{\text {ZPE }}(\mathrm{eV})$ and entropy $\mathrm{TS}(\mathrm{eV})$ of molecules and adsorbates on four structures.

Species	$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$0.56 / 0.67$	$0.56 / 0.67$	$0.56 / 0.67$	$0.56 / 0.67$
$\mathrm{H}_{2}(\mathrm{~g})$	$0.27 / 0.41$	$0.27 / 0.41$	$0.27 / 0.41$	$0.27 / 0.41$
H^{*}	$0.24 / 0.01$	$0.23 / 0.01$	$0.24 / 0.01$	$0.23 / 0.01$
OH^{*}	$0.37 / 0.09$	$0.37 / 0.09$	$0.38 / 0.09$	$0.37 / 0.09$
O^{*}	$0.07 / 0.06$	$0.07 / 0.06$	$0.07 / 0.06$	$0.08 / 0.06$
OOH^{*}	$0.46 / 0.17$	$0.46 / 0.17$	$0.45 / 0.18$	$0.46 / 0.16$

Carrier mobility

The carrier mobility of $\mathrm{MSi}_{2} \mathrm{~N}_{3} \mathrm{Y}$ monolayers are calcualted based on the deformation potential (DP) approach ${ }^{3}$, which is expressed by the following equation:

$$
\begin{equation*}
\mu=\frac{2 e \hbar^{3} C}{3 k_{B} T\left|m^{*}\right|^{2} E_{d}{ }^{2}} \tag{S18}
\end{equation*}
$$

where e, \hbar and k_{B} are electron charge, the reduced Planck constant and Boltzmann constant, T means the temperature. C and E_{d} represent the elastic modulus and deformation potential constant. C can be obtained from $C=\frac{1 \partial^{2} E}{S_{0} \partial \varepsilon^{2}}$, where E_{d} is the total energy of the system under uniaxial strain, S_{0} is the area of the system, and ε is
the ratio of lattice parameter under the uniaxial strain along x or y direction on the rectangle cell and. E_{d} is represented by $E_{d}=\frac{\partial E_{\text {edge }}}{\partial \varepsilon}$, and $E_{\text {edge }}$ is the energy change of band edge under uniaxial strain. At the meantime, the effective mass m^{*} is calculated from the following relations:

$$
\begin{equation*}
\frac{1}{m^{*}}=\frac{1 d^{2} E(k)}{\hbar^{2} d k^{2}} \tag{S19}
\end{equation*}
$$

where k is wave vector and $E(k)$ represents the energy that corresponding to k.

Solar-to-hydrogen (STH) efficiency

STH efficiency is estimated by the product of the efficiency of light absorption $\eta_{a b s}$ and carrier utilization $\eta_{c u}$ using the following expression ${ }^{4}$:

$$
\begin{equation*}
\eta_{S T H}=\eta_{a b s} \times \eta_{c u} \tag{20}
\end{equation*}
$$

The efficiency of light absorption is defined as:

$$
\begin{equation*}
\eta_{a b s}=\frac{\int_{E_{g}}^{\infty} P(\hbar \omega) d(\hbar \omega)}{\int_{0}^{\infty} P(\hbar \omega) d(\hbar \omega)} \tag{21}
\end{equation*}
$$

where E_{g} is the band gap of photocatalyst and $P(\hbar \omega)$ is the AM1.5 solar energy flux at the photon energy $\hbar \omega$.

The efficiency of carrier utilization $\left(\eta_{c u}\right)$ is estimated by

$$
\begin{equation*}
\eta_{c u}=\frac{\Delta G_{H_{2}} 0 \int_{E}^{\infty} \frac{P(\hbar \omega)}{\hbar \omega} d(\hbar \omega)}{\int_{E_{g}}^{\infty} P(\hbar \omega) d(\hbar \omega)} \tag{22}
\end{equation*}
$$

where $\Delta G_{H_{2} \mathrm{O}}$ is the potential difference for water splitting (1.23 eV) and E is the energy of photons that can be used for water splitting, which can be defined as

$$
E=\left\{\begin{array}{c}
E_{g},\left(\chi\left(\mathrm{H}_{2}\right) \geq 0.2, \chi\left(\mathrm{O}_{2}\right) \geq 0.6\right) \tag{23}\\
E_{g}+0.2-\chi\left(\mathrm{H}_{2}\right),\left(\chi\left(\mathrm{H}_{2}\right)<0.2, \chi\left(\mathrm{O}_{2}\right) \geq 0.6\right) \\
E_{g}+0.6-\chi\left(\mathrm{O}_{2}\right),\left(\chi\left(\mathrm{H}_{2}\right) \geq 0.2, \chi\left(\mathrm{O}_{2}\right)<0.6\right) \\
E_{g}+0.8-\chi\left(\mathrm{H}_{2}\right)-\chi\left(\mathrm{O}_{2}\right),\left(\chi\left(\mathrm{H}_{2}\right)<0.2, \chi\left(\mathrm{O}_{2}\right)<0.6\right)
\end{array}\right.
$$

where $\chi\left(\mathrm{H}_{2}\right)$ and $\chi\left(\mathrm{O}_{2}\right)$ are the over potentials for HER and OER, respectively. Considering the energy loss during carrier migration between different materials, the required over potentials for HER and OER are assumed to be 0.2 and 0.6 eV , respectively.

The intrinsic electric filed does positive work for the electron-hole separation during the process of photocatalytic water splitting. Therefore, this part of work should be added into the total energy, and then the corrected STH efficiency of photocatalytic water splitting for 2D material with vertical intrinsic EF is calculated as

$$
\begin{equation*}
\eta_{S T H}^{\prime}=\eta_{S T H} \times \frac{\int_{0}^{\infty} P(\hbar \omega) d(\hbar \omega)}{\Delta \Phi \int_{E_{g}}^{\infty} \frac{P(\hbar \omega)}{\hbar \omega} d(\hbar \omega)+\int_{0}^{\infty} P(\hbar \omega) d(\hbar \omega)} \tag{24}
\end{equation*}
$$

where $\Delta \Phi$ is the vacuum level difference on the two respective surfaces.

Table S6. The calculated Over-Potential for HER $\chi\left(\mathrm{H}_{2}\right)$, Over-Potential for OER $\chi\left(\mathrm{O}_{2}\right)$, the photons energy (E), energy conversion efficiency of light absorption $\left(\eta_{\mathrm{abs}}\right)$, carrier utilization $\left(\eta_{\mathrm{cu}}\right)$, and corrected STH ($\eta_{\mathrm{STH}}^{\prime}$) of four monolayers $\mathrm{pH}=7$.

Monolayers	$\chi\left(\mathrm{H}_{2}\right)(\mathrm{eV})$	$\chi\left(\mathrm{O}_{2}\right)(\mathrm{eV})$	$E(\mathrm{eV})$	$\eta_{\mathrm{abs}}(\%)$	$\eta_{\mathrm{cu}}(\%)$	$\eta_{\text {STH }}^{\prime}(\%)$
$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	0.96	0.89	0.96	91.13	70.89	30.57
$\mathrm{MoSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	0.95	0.82	0.46	99.82	78.41	29.84
$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{P}$	0.96	0.60	0.79	95.52	74.20	32.93
$\mathrm{WSi}_{2} \mathrm{~N}_{3} \mathrm{As}$	0.97	0.72	0.45	99.82	78.41	30.51

References

1. R. C. Andrew, R. E. Mapasha, A. M. Ukpong, N. Chetty, Phy. Rev. B 2012, 85, 125428.
2. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phy. Chem. B 2004, 108, 17886.
3. J. Bardeen, W. Shockley, Phys. Rev. 1950, 80, 72-80.
4. C.F. Fu, J. Sun, Q. Luo, X. Li, W. Hu, J. Yang, Nano Lett. 2018, 18, 6312-6317.
