Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials

Distinct anharmonic characteristics of phonons driven lattice thermal conductivity and thermal expansion in bulk MoSe₂ and WSe₂

Mayanak K Gupta^{1,2*}, Sajan Kumar^{1,2}, Ranjan Mittal^{1,2#}, Sanjay K Mishra^{1,2}, Stephane Rols³, Olivier Delaire⁴, Arumugum Thamizhavel⁵, P U Sastry^{1,2}, and Samrath L Chaplot^{1,2}

 ¹Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
²Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
³Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France
⁴Department of Mechanical Engineering and Materials Science, Duke University, NC 27708, USA
⁵Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
Email: *mayankg@barc.gov.in, [#]rmittal@barc.gov.in

The crystal structure of MoSe₂/WSe₂ is show in **Figure S1**. The structure consists of layers of MoSe₆/WSe₆ octahedral units in the *a-b* plane, with a stacking of layers along the *c*- axis shifted by ($\frac{1}{4}$ $\frac{1}{4}$ 0). The probability distributions of atomic positions show a large anisotropy in both experiment and simulations. In **Figure S1** (**b**, **c**), we show the probability distribution for the transition metal in the *ab* and *bc*-planes obtained from the MLMD trajectory at 700 K. The structure parameters of TMSe₂ at ambient conditions are given in Table S1.

Table S1: The structure parameters and atomic positions of MoSe₂ and WSe₂ obtained from DFT calculation and X-ray diffraction measurements.

	Space group (194, P6 ₃ /mmc)			
	MoSe ₂	WSe ₂		
	DFT-relaxed (50 K expt.)	DFT-relaxed (50 K expt.)		
a	3.276 (3.283)	3.275 (3.275)		
С	12.722 (12.891)	12.777 (12.961)		
Se(x,y,z) Wyckoff (4 <i>f</i>)	(2/3, 1/3,0.118)	(2/3, 1/3,0.118)		
Mo/W (x,y,z) Wyckoff $(2b)$	(1/3, 2/3, 1/4)	(1/3, 2/3, 1/4)		

	MoSe ₂	Expt.	WSe ₂	Expt.
	Calc		Calc	
C ₁₁	187	177	203	-
C ₁₂	42	-	38	-
C13	13	-	13	-
C33	66	70	68	-
C44	23	-	24	-
Bulk-Modulus	47.9	-	49.4	-

TABLE S2. Calculated elastic constants in GPa units of MoSe₂ and WSe₂, and experimental elastic constants of MoSe₂ [1]

TABLE-S3: The calculated in-plane(κ_{xy}) and out-of-plane (κ_z) lattice thermal conductivity, using ShengBTE-3ph, TDEP-3ph and ShengBTE 3ph+4ph methods, and the Green-Kubo method based on equilibrium molecular dynamics simulation that includes all order of anharmonicity. The reported measured lattice thermal conductivity obtained using the time-domain thermoreflectance technique[12].

(a) MoSe ₂ (κ_{xy}/κ_z) (W/m-K)								
Temperature	Expt.	ShengBTE-	ShengBTE-	TDEP	Green-			
		3Phonon	3+4Phonon		Kubo			
100 K	90.0/2.7	260.7/49.6	260.5/43.2	169.8/11.1	102.0/14.2			
200 K	51.0/3.1	119.7/22.9	112.7/14.9	77.4/5.2				
300 K	34.0/2.5	79.4/15.2	70.3/8.3	51.5/3.5	39.0/4.0			
400 K		59.9/11.4	50.1/5.5	38.8/2.6				
500 K		48.2/9.2	38.3/3.9	31.3/2.1	18.5/3.0			
600 K		40.5/7.7	30.5/3.0	28.6/1.9				
700 K		34.9/6.6	25.1/2.4	24.4/1.6	13.4/2.0			
800 K		30.7/5.8	21.1/1.9	21.2/1.4				
900 K		27.3/5.2	18.0/1.6	18.8/1.3				
(b) WSe ₂ (κ_{xy}/κ_z) (W/m-K)								
Temperature	Expt.	ShengBTE-	ShengBTE-	TDEP	Green-			
		3Phonon	3+4Phonon		Kubo			
100 K	120.0/2.9	319.6/47.5	267.2/26.9	213.0/11.6	119.5/39.0			
200 K	58.0/3.0	136.7/20.3	97.2/7.9	89.9/5.1				
300 K	39.0/2.1	89.2/13.2	55.1/4.1	58.7/3.4	42.0/5.0			
400 K		67.6/9.9	36.4/2.6	44.0/2.5				
500 K		54.4/7.9	26.1/1.8	35.3/2.0	28.2/9.0			
600 K		45.6/6.6	19.7/1.3	29.5/1.6				
700 K		39.3/5.7	15.5/1.0	25.5/1.5	19.0/7.0			
800 K		34.6/4.9	12.5/0.8	23.8/1.4				
900 K		30.8/4.4	10.3/0.6	21.0/1.2				

Figure S1. Crystal structure of MSe_2 (M=Mo, W) at ambient conditions (space group no. 194, P6₃/mmc). Light-purple and light-green colors, respectively, show M and Se elements. MLMD simulation of the atomic distribution of W at 700 K in (b) the a-b-plane and (c) in the b-c plane at 700 K for WSe2. The W atoms show a symmetric thermal amplitude in the a-b plane while its thermal distribution is more elongated along the c-axis, and asymmetric in the b-c plane. A similar distribution is also observed for the Se atoms.

Figure S2: The AIMD and MLMD calculated pair-distribution function, total energies and forces for (top-panel) MoSe₂ and (bottom panel) WSe₂. The good agreement between the two simulations validates the machine-learned force field.

Figure S3: The calculated lattice thermal conductivity from three-phonon scattering using ShengBTE using a q-point grid of $24 \times 24 \times 5$ and $28 \times 28 \times 7$. The computed values do not show any significant difference, and hence a $24 \times 24 \times 5$ q-point grid in BZ was used for all other calculations.

Figure S4: The measured temperature dependence of neutron-weighted phonon density of states of MoSe₂ and WSe₂.

Figure S5. The calculated mode-resolved phonon scattering rate, life time and group velocities on a (24×24×7) q-point grid in BZ in MoSe₂ and WSe₂, calculated from 2nd and 3rd-order force-constants at 0 K (ShengBTE-3ph), calculated from 2nd, 3rd- and 4th order force-constants at 0 K (ShengBTE-3ph+4ph) and renormalized 2nd and 3rd-order force-constants at 300 K (TDEP-3ph). Both the ShengBTE-3ph and ShengBTE-3ph+4ph calculation use the same 0 K harmonic phonon group velocity, while the TDEP uses the temperature renormalized phonon group velocities.

Figure S6. (a-b) The calculated mode Grüneisen parameters in MoSe₂ and WSe₂ using pressure dependence of phonon frequencies and (c-d) mode-resolved contribution to thermal expansion coefficient at 300 K in MoSe₂ and WSe₂, (e, f) The fraction change in volume with temperature calculated within QHA and compared with our X-ray measurements.

Figure S7. The calculated temperature dependence of PDOS, g(E), of MoSe₂ and WSe₂ using AIMD simulation by calculating the Fourier transform of the velocity autocorrelation function. For better visibility, the subsequent PDOS curves are vertically shifted by 0.025.

[1] V. Babacic, D. Saleta Reig, S. Varghese, T. Vasileiadis, E. Coy, K.-J. Tielrooij, and B. Graczykowski, Advanced Materials **33**, 2008614 (2021).