Supporting Information

Hemi-Methylamine Lithium Borohydride as Electrolyte for All-Solid-State Batteries

Jakob B. Grinderslev, Lasse N. Skov and Torben R. Jensen*

Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

* Corresponding author: trj@chem.au.dk, Tel: +45 8942 3894

Figure S1. Crystal voids analysis of $LiBH_4$ ·½ CH_3NH_2 using Crystal explorer and the standard isovalue of 0.002 e·au⁻³. Color scheme: Li (blue), B (light blue), N (red), C (black), H (grey). The light purple ribbons illustrate voids.

Figure S2. Energy barriers of the Li⁺ ion migration pathway in the LiBH₄· $\frac{1}{2}$ CH₃NH₂ unit cell as calculated by the software SoftBV using the Bond-Valence approach. a) shows the energy profile for conduction pathway A (1D) and the complete energy landscape for a three-dimensional conduction pathway, which also include a framework Li⁺. b) shows the energy profile for conduction pathway B. Note that SoftBV calculates for a static structure.

Figure S3. Temperature-dependent ionic conductivity of LiBH₄·½CH₃NH₂ upon cycling.

Figure S4. Linear sweep voltammetry of $LiBH_4$ ·½ CH_3NH_2 in a two electrode setup with Li as counter/reference electrode and Mo as working electrode recorded at T = 30 °C with a scan rate $v = 1 \text{ mV s}^{-1}$ in the potential range from OCV to 2.4 V to evaluate the oxidative stability.

igure S5. Chronoamperometry in a symmetric Mo|LiBH4·½CH₃NH₂|Mo cell at 30 °C by applying 0.5 V for 1 h

Figure S6. Rietveld refinement of the *in operando* data collected for Li|LiBH₄·½CH₃NH₂|TiS₂ from SR PXD data measured at room temperature, $\lambda = 0.3542$ Å, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Blue tick marks: LiBH₄·½CH₃NH₂, red tick marks: TiS₂. Final discrepancy factors: R_p = 2.65 %, R_{wp} = 3.40 % (not corrected for background), R_p = 45.6 %, R_{wp} = 23.2 % (conventional Rietveld R-factors). The ranges containing scattering from the Al-windows and Li-metal has been excluded in the refinement.