Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary information:

$Li_4B_{10}H_{10}B_{12}H_{12}$ as solid electrolyte for solid-state lithium batteries

Andrea Garcia¹, Gian Müller¹, Radovan Černý², Daniel Rentsch¹, Ryo Asakura¹, Corsin Battaglia¹, and Arndt Remhof^{1*}

¹ Empa, Swiss Federal Laboratories of Materials Science and Technology, Dübendorf, Switzerland ² Laboratory of crystallography DQMP, University of Geneva, Quai Ernest-Ansermet 24, 1211 Geneva, Switzerland

*arndt.remhof@empa.ch

Figure S1. DSC and TG signals of the as-received precursors	2
Figure S2. XRD pattern of the as-received precursors	2
Figure S3. ²³ Na NMR confirming the ion exchange	2
Figure S4. Voltammograms of $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$	2
Figure S5. Ionic conductivity of the ion-exchanged the $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ mixtures	3
Figure S6. XRD of the $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ mixtures recovered from solutions with different solvent	s4
Figure S7. Charge-discharge voltage profiles	4

Figure S1. DSC (black) and TG (red) signals of the as-received precursors $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ ·4 H_2O .

Figure S2. XRD pattern of the as-received precursors ($Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ ·4 H_2O) (blue), the dried precursors (red), and the references (black)¹.

¹ Reference pattern taken from the ICSD Database. The database refers to Wu et al., *J. Phys. Chem. C* 2015, 119, 6481 (for $Li_2B_{10}H_{10}$) [9] and Her et al., *Inorg. Chem.* 2008, 47 9757 (for $Li_2B_{12}H_{12}$) [27].

Figure S3. ²³Na NMR spectra of a stoichiometric mixture of $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ prepared from the commercial precursors (red) and ion-exchanged $Na_2B_{10}H_{10}$ and $Na_2B_{12}H_{12}$ (blue).

Figure S4. Voltammograms of the Li/SE/SE-C/Pt cells at a scan rate of 10 μ V s⁻¹ between 2.5 V and 6.0 V vs Li⁺/Li at 120 °C, using Li₂B₁₀H₁₀ and Li₂B₁₂H₁₂ as a solid electrolyte.

Figure S5. Temperature-dependent lithium-ion conductivity of the dried and ball-milled 1:1 stoichiometric mixture of (i) the dried commercial precursors $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$, (ii) $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ obtained

by ion exchange of $Na_2B_{10}H_{10}$ and $Na_2B_{12}H_{12}$ from individual batches and (iii) $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ obtained from the simultaneous ion exchange of $Na_2B_{10}H_{10}$ and $Na_2B_{12}H_{12}$.

Figure S6. XRD pattern of the $Li_2B_{10}H_{10}$ and $Li_2B_{12}H_{12}$ mixtures recovered from solutions with different solvents. Except for 2-butanone, they all show the coexistence of the initial phases.

Figure S7. a) Charge-discharge voltage profiles for 39 cycles at a C-rate of C/5 after two initial cycles at C/10, using a $TiS_2|SE|Li$ cell under 1.71 MPa at 60 °C. The cathode composite contained 40 wt% TiS_2 , 50 wt% solid electrolyte and 10 wt% carbon. The cell failed in the 39th cycle. b) Charge-discharge voltage profiles for the first 32 cycles at a C-rate of C/5 after two initial cycles at C/10, using a LiFePO₄|SE|Li cell under 1.71 MPa at 60 °C. The cathode composite contained 30 wt% LiFePO₄, 50 wt% solid electrolyte, 15 wt% carbon, and 5 wt% PVDF.