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Experimental Section
Electrochemical measurements. All electrochemical measurements were conducted by CHI760E 

electrochemical workstation. The samples were employed as the working electrode, a graphite 

electrode was used as the counter electrode and a saturated Ag/AgCl was utilized as the reference 

electrode. The electrochemical impedance spectroscopy (EIS) was measured at a voltage of -1.1 V 

with the frequency range of 100 kHz-0.01 Hz. To evaluate HER activity, the linear sweep voltammetry 

(LSV) curves were recorded at potential range from -1.0 to -1.5 V vs. Ag/AgCl with a scan rate of 2 

mV s-1. The potential was converted to reversible hydrogen electrode (RHE) by the equation of ERHE 

= EAg/AgCl + 0.198 + 0.0591×pH. The electrochemical active surface area (ECSA) was estimated 
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according to the double layered capacitance (Cdl). The cyclic voltammetry (CV) were tested at different 

scan rates (2 mV s-1, 4 mV s-1, 6 mV s-1, 8 mV s-1, and 10 mV s-1) in a non-Faradaic region (-0.85 to -

0.95V vs. Ag/AgCl), and plotting the difference in current density between the anodic and cathodic 

sweeps (∆j = ja - jc) at 0.9V vs. Ag/AgCl as a function of scan rates yielded a straight line with slope 

equal to Cdl.

 The ECSA of as-synthesized catalysts is calculated following:
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where the specific capacitance for a flat surface (CS) is generally between 0.02-0.06 mF cm-2. 

Therefore, we used CS of 0.04 mF cm-2 to calculate the ECSA.

The TOF value is calculated from the equation: 

TOF =
NF
I

*2

where I is the measured current during the linear sweep measurement, N is number of the active sites, 

and F is the Faraday constant (96485 C mol-1). Assuming a one electron redox and oxidation process, 

the upper limit of active sites could be calculated by the follow equation: N=
, 
cyclic voltammetry 

F
Q
*2

were measurements from -0.85 to -0.95 V vs. Ag/AgCl at 2 mV s-1 in 1 M KOH solution, where Q is 

the whole charge of CV curve.

DFT Calculations. DFT calculations were performed using the Vienna Ab Initio Simulation Package 

(VASP).[1-3] The electron ion interaction was described with the projector augmented wave (PAW) 

method.[4] The electron exchange and correlation energy were treated within the generalized gradient 

approximation (GGA) in the Perdew-Burke-Ernzerhof formalism (PBE).[5, 6] The energy cut-off for 

the plane-wave basis was set to 500 eV for all calculations. Conjugated gradient method was used to 

the geometry optimization and all the atomic coordinates were fully relaxed until the maximal force 
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on each atom was less than 0.05 eV/Å, and the convergence condition for energy is 10-4 eV. All 

constructions possess larger than 20 Å vacuum region in the z direction to minimize the interaction 

between planes. The Monkhorst Pack [7] sampling scheme were set of 2×2×1 and 4×4×1 for geometry 

optimization, electronic self-consistent calculation, respectively. TheGH is calculated following:

GH =H +ZPE - TSH  

Where H is the binding energy of hydrogen atom, and ZPE and TSH is zero-point energy 

corrections and the entropic corrections, respectively, which can be simplified as 0.24 eV.
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Figure S1. The FE-SEM images of NiCu with different magnifications.

Figure S2. The FE-SEM images of NiMo with different magnifications.
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Figure S3. The FE-SEM images of NiCu/MoOx with different magnifications.
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Figure S4. The FE-SEM images of NiCu/MoOx after 65 h at 10 mA cm-2 in 1M KOH.

Figure S5. The SEM image of NiCu with EDX elemental mapping and corresponding element amounts.
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Figure S6. The SEM image of Ni/MoOx with EDX elemental mapping and corresponding element amounts.

Figure S7. The SEM image of NiCu/MoOx with EDX elemental mapping and corresponding element amounts.
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Figure S8. The SEM image with EDX elemental mapping and corresponding element amounts of NiCu/MoOx after 

stability test.
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Figure S9. The Raman spectra of NiCu/MoOx before and after stability test.
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Figure S10. The HAADF-STEM of NiCu.

Figure S11. The XPS survey of (a) NiCu, (b) Ni/MoOx and (c) NiCu/MoOx.
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Figure S12. a) Ni K-edge XANES of NiCu, NiCu/MoOx, Ni foil and NiO; b) Corresponding accurate Ni value.

Figure S13. The ECSA-normalized LSV curves of the prepared Ni, NiCu, Ni/MoOx and NiCu/MoOx toward HER 

in 1M KOH.
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Figure S14. The LSV curves of NiCu/MoOx with different deposition currents and times for HER in 1M KOH.

Figure S15. The LSV curves of different ratios of a) Ni/Cu and b) Ni/Cu/Mo toward HER with scan rates 

of 2 mV S-1 in 1M KOH.
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Figure S16. The cyclic voltammograms (CV) of (a) Ni, (b) Ni/MoOx, (c) NiCu, (d)NiCu/MoOx, (e) Pt/C with scan 

rates of 2-10 mV S-1 in 1M KOH.
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Figure S17. The LSV curves of the prepared NF, Ni, Ni/MoOx, NiCu, NiCu/MoOx without IR compensation with 

scan rates of 2 mV S-1 in 1M KOH.
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Figure S18. The LSV curves of loading NiCu/MoOx catalysts onto different substrates (nickel foam and iron foam).

Figure S19. Bode plots for a) NiCu in 1 M KOH with Heyrovsky step as RDS, and b) NiCu/MoOx with mixture 

mechanisms (Heyrovsky–Volmer and Tafel–Volmer).
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Figure S20. a) Physical picture of the device, b) The amount of H2 collected by the water drainage method as a 

function of time for NiCu/MoOx under a constant current density of 100 mA cm−2.

Figure S21. a) a) The chronopotentiometry (i-t) tests of the NiCu/MoOx electrode at 100 mA cm-2. b) The lsv 

before and after test.
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Table S1. Ni, Cu and Mo atomic percentages obtained from ICP-OES results.

Table S2. Comparison of HER performance for NiCu/MoOx with other reported electrocatalysts in 1 M KOH. 

Catalysts Electrolyte
η(mV)

j=-10 mAcm-2

Tafel slope
(mV dec-1)

References

NiCu/MoOx 1.0M KOH 14 38.3 this work

Pt/MgO 1.0M KOH 39 39
Nat. Commun. 2022. 13. 

2024[8]

V-Ni2MoN3 1.0M KOH 54 42.8
Electrochimica Acta 
337(2020)135689[9]

NiCo LDH/NF 1.0M KOH 51 70
Adv. Funct. Mater. 

28(2018)1704594[10]

Mo-NiO/Ni 1.0M KOH 50 86
ACS Energy Lett. 

2019,4,3002-3010[11]

Sr2RuO4 1.0M KOH 61 51
Nat. Commun. 2019, 10, 

149[12]

P-Mo-Ni(OH)2 1.0M KOH 22 80
Appl. Catal. B-Environ. 
260(2020)118154[13]

Ni3N-V2O3 1.0M KOH 57 50
Appl. Catal. B-Environ. 

(2020).119590[14]

Ru/Ni(OH)2/NF 1.0M KOH 25 45
J. Mater. Chem. A 2019,7, 

11062-11068[15]

Pt/NiRu-OH 1.0M KOH 38 39
Appl. Catal. B-Environ. 
2020, 269, 118824[16]

Ni5P4-Ru/CC 1.0M KOH 54 52
Adv. Mater: 2020, 32, 

1906972[17]

RuCo@N-C 1.0M KOH 28 31
Nat. Commun. 2017, 8, 

14969[18]

Ru@SC-CDs 1.0M KOH 29 57
Nano Energy 2019, 65, 

104023[19]
NiFeRu-LDH 1.0M KOH 29 31 Adv. Mater 2018, 30, 
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1706279[20]

Ru@NG-750 1.0M KOH 40 35.9
ACS Catal. 2019, 9, 9897-

9904[21]

Pt/Co(OH)2 1.0M KOH 32 70
ACS Catal. 2017, 7, 7131-

7135[22]

Vs-Co3S4@NF 1.0M KOH 46 66
Appl. Catal. B-Environ. 
322(2023)122104[23]

ReS2/NiS 1.0M KOH 78 76
Chemical Engineering 

Journal 
451(2023)138905[24]

Ni(Cu)/NF 1M KOH 27 33.3 Small 2018, 14, 1704137[25]

PtSAM-NiO/Ni 1M KOH 26 27.07
Nat Commun 12, 3783 

(2021).[26]
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