ELECTRONIC SUPPLEMENTARY INFORMATION

Structure and thermal properties relationships in the

thermomaterial di-n-butylammonium tetrafluoroborate for

multipurpose cooling and cold-storage

Javier García-Ben^{a,‡}, Juan Manuel Bermúdez-García^{a,‡}, Richard J. C. Dixey^b, Ignacio Delgado-Ferreiro^a, Antonio Luis Llamas-Saiz^c, Jorge López-Beceiro^d, Ramón Artiaga^d, Alberto García-Fernández^e, Ute B. Cappel^e, Bruno Alonso^f, Socorro Castro-García^a, Anthony E. Phillips^b, Manuel Sánchez-Andújar^{a*} and María Antonia Señarís-Rodríguez^{a**}

^a University of A Coruna, QUIMOLMAT Group, Dpt. Chemistry, Faculty of Science and Centro Interdisciplinar de Química e Bioloxía (CICA), Zapateira, 15071 A Coruña, Spain.

^b School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK.

^c Research Infrastructures Area, X-ray Unit, University of Santiago de Compostela,15782 Santiago de Compostela, Spain.

^d Universidade da Coruña, Campus Industrial de Ferrol, CITENI-Grupo Proterm, Campus de Esteiro, 15403 Ferrol, Spain.

^e Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

^fICGM, CNRS, Université de Montpellier, ENSCM, 34095 Montpellier Cedex 5, France.

[‡] These authors have equally contributed to this work.

E-mail: <u>m.andujar@udc.es</u>, <u>m.señaris.rodriguez@udc.es</u>

Fig. S1 Liquid ¹H-NMR of [DBA][BF4] in CDCl₃.

Fig. S2 Thermogravimetric analysis of [DBA][BF4] under N₂ atmosphere.

Fig. S3 a) Pressure-driven isothermal entropy changes on applying $(0 \rightarrow p)$ and removing $(p \rightarrow 0)$ pressure. b) Reversible adiabatic temperature changes on applying $(0 \rightarrow p)$ and removing $(p \rightarrow 0)$ pressure at different pressures.

Fig. S4 Maximum reversible isothermal entropy changes of the $(0 \rightarrow p)$ curves at different pressures as a function of temperature.

Fig. S5 Coordination environment of a) BF_4^- and b) DBA^+ in phase IV at T = 100 K.

Fig. S6 H-Bonds of each $[BF_4]^-$ molecule in phase IV at T = 100 K.

Fig. S7 SPXRD patterns of [DBA][BF4] as a function of temperature (180 K < T < 320 K)].

Fig. S8 Le Bail refinement of phase III of [DBA][BF4] at T = 180 K.

Fig. S9 Le Bail refinement of phase II of $[DBA][BF_4]$ at T = 270 K.

Fig. S10 Le Bail refinement of phase I of [DBA][BF4] at T = 320 K.

Fig. S11 Rietveld refinement of phase II of $[DBA][BF_4]$ at T = 270 K

Fig. S12 Rietveld refinement of phase I of $[DBA][BF_4]$ at T = 300 K.

Fig. S13 ¹³{¹H} CP-MAS spectra of phase I of [DBA][BF4] at T = 318 K.

Empirical formula	C ₈ H ₂₀ N·BF ₄	C8H20N·BF4
Formula weight	217.06	217.06
Temperature	100.0(1) K	240.0(1) K
Wavelength	1.54178 Å	1.54178 Å
Crystal system	Orthorhombic	Orthorhombic
Space group	Ccce	Cmme
Unit cell dimensions	a = 7.3980(5) Å	a = 7.5762(10) Å
	b = 18.4562(11) Å	b = 18.642(3) Å
	c = 16.8535(10) Å	c = 8.5564(12) Å
Volume	2301.2(2) Å ³	1208.5(3) Å ³
Z	8	4
Density (calculated)	1.253 Mg/m ³	1.193 Mg/m ³
Absorption coefficient	1.02 mm ⁻¹	0.97 mm ⁻¹
F(000)	928	464
Crystal size	0.32 x 0.22x 0.08 mm ³	0.32 x 0.22x 0.08 mm ³
Theta range for data collection	5.3 to 67.8°	5.2 to 65.0°.
Index ranges	0<=h<=8	0<=h<=8
	0<=k<=22	0<=k<=21
	0<=l<=20	0<=l<=10
Reflections collected	50094	13977
Completeness (theta max.)	98.7 % (67.76°)	97.2 % (65.04°)
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	1100 / 0 / 69	629 / 96 / 77
Goodness-of-fit on F ²	1.14	1.55
Final R indices [I>2sigma(I)]	R1 = 0.1091	R1 = 0.1248
	wR2 = 0.3093	wR2 = 0.2748
R indices (all data)	R1 = 0.1310	R1 = 0.1695
	wR2 = 0.3378	wR2 = 0.3096
Largest diff. peak and hole	0.61 and -0.32 e.Å ⁻³	0.48 and -0.28 e.Å ⁻³

Table S1. Data collection, cell and refinement parameters from the single crystal X-ray diffraction studies carried out at T = 100 K and T = 240 K for phases IV and III of [DBA][BF4]

Table S2. All the barocaloric materials represented in Fig. 5. *Note:* HOIM = Hybrid Organic-Inorganic Material, SP = Spin Crossover compound, OPC = Organic Plastic Crystal, POL = Polymer, AIS = Ammonium Inorganic Salt and MA = Metal Alloy. *Note2*: 24 and 25 are the same compound due to it has 2 phase transitions.

Number	Family	Material	REF	Number	Family	Material	REF
1	HOIM	$(C_{10}H_{21}NH_3)_2MnCl_4$	1	31	AIS	NH4I	2
2	HOIM	(C9H19NH3)2MnCl4	3	32	AIS	(NH4)2MoO2F4	4
3	HOIM	(Me ₃ S)FeCl ₄	5	33	MA	Ni50Mn31.5Ti18.5	6
4	HOIM	(Me ₃ (ClMe)N)FeCl ₄	5	34	MA	MnNiSi0.59FeCoGe0.41	7
5	HOIM	(C9H19NH3)2CuBr4	3	35	MA	LaFe11.33Co0.47Si1.2	8
6	HOIM	$[Me_4N][Mn(N_3)_3]$	9	36	MA	Mn ₃ NiN	10
7	HOIM	$[Pr_4N][Mn(N(CN)_2)_3]$	11	37	MA	Gd ₂ Si ₅ Ge ₅	12
8	HOIM	[Pr ₄ N][Cd(N(CN) ₂) ₃]	13	38	MA	Ni0.95Fe0.05S	14
9	HOIM	[Me ₂ NH ₂][Mg(HCOO) ₃]	15	39	MA	Ni44.6Co5.5Mn35.5In14.4	16
10	SC	[FeL ₂][BF ₄] ₂	17	40	MA	Ni2.00Mn1.32In0.68	18
11	SC	[Fe(hyptrz) ₃]A ₂ ·H ₂ O	19	41	MA	Co50Fe2.5V31.5Ga16	20
12	SC	Fe ₃ (bntrz) ₆ (tcnset) ₆	21	42	MA	MnNiSi0.60FeCoGe0.40	22
13	SC	Fe[HB(tz)3]2	23	43	MA	MnCoGeB _{0.03}	24
14	OPC	(CH ₃)C(CH ₂ OH) ₃	25	44	MA	Mn ₃ GaN	26
15	OPC	(CH ₃) ₂ C(CH ₂ OH) ₂	27	45	MA	Ni35.5Co14.5Mn35Ti15	28
16	OPC	C11H18O	29	46	MA	Ni49.26Mn36.08In14.66	7
17	OPC	(CH ₃) ₃ C(CH ₂ OH)	25	47	MA	Ni0.875Fe0.125S	14
18	OPC	$C_{10}H_{15}Cl$	30	48	MA	Ni0.85Fe0.15S	14
19	OPC	$o-C_2B_7H_{12}$	31	49	MA	Ni1.99Mn1.34In0.67	18
20	OPC	<i>m</i> -C ₂ B ₇ H ₁₂	31	50	MA	Fe49Rh51	32
21	OPC	$p-C_2B_7H_{12}$	31	51	MA	MnCoGe0.99In0.01	33
22	OPC	$C_{10}H_{15}Br$	30	52	MA	MnNiSi0.61FeCoGe0.39	22
23	OPC	$1 - C_{10}H_{15}O$	29	53	MA	Ni0.825Fe0.175S	14
24	OPC	2- C ₁₀ H ₁₅ O	29	54	MA	Ni58.3Mn17.1Ga24.6	34
25	OPC	2- C ₁₀ H ₁₅ O	29	55	MA	Ni42.3C07.9Mn38.8Sn11.0	35
26	OPC	C_{60}	36	56	MA	Ni1.99Mn1.37In0.64	18
27	POL	Acetoxy Silicone Rubber	37	57	MA	Ni2.05Mn1.30In0.65	18
28	POL	PVDF-TrFE-CTFE	38	58	MA	MnNiSi0.62FeCoGe0.38	22
29	AIS	NH4HSO4	39	59	MA	Ni2.02Mn1.36In0.62	18
30	AIS	(NH4)2NbOF5	40				

 Table S3. Atom distances and Rietveld refinement parameters of phase II.

Unit cell: *a* = 7.62273, *b* = 20.34391, *c* = 8.51112

Final refinement: wR = 5.92% on 9126 observations in this histogram

Atom	X	У	Z	Occ.	Uiso
name					
N1	0	0.75	0.27243	1	0.11078
C2	0	0.68191	0.20262	1	0.10748
C3	0	0.64166	0.29171	1	0.11633
C4	0	0.58008	0.18323	1	0.1233
C5	0.08897	0.51155	0.29982	0.5	0.23804
B1_1	0.495	0.7494	0.2854	0.25	0.17123
F1_1	0.49964	0.68345	0.16725	0.25	0.17313
F2_1	0.33725	0.78389	0.32159	0.25	0.30528
F3_1	0.57343	0.71161	0.42633	0.25	0.34777
F4_1	0.5873	0.79578	0.24478	0.25	0.1503

Other residuals: *R* = 3.45%, *R*-*bkg* = 8.29%, *wR*-*bkg* = 5.92% *wRmin* = 0.41%

Table S4. Atom distances and Rietveld refinement parameters of phase I.

Unit Cell: *a* = 5.73161, *b* = 5.73161, *c* = 20.61450

Final refinement: wR = 8.98% on 21501 observations in this histogram

Ot	her residua	ls: <i>R</i> =	6.70%,	, <i>R-bkg</i> =	8.25%,	wR- $bkg =$	8.98%	wRmin	= 3.4	18%
----	-------------	----------------	--------	------------------	--------	-------------	-------	-------	-------	-----

Atom	X	У	Z	Occ.	Uiso	
name						
В	0	0	0.47	0.5	0.30668	
F1	0	0	0.41	0.5	0.31835	
F2	0.18501	0	0.5	0.25	0.39494	
N4	0	0	0	1	0.92652	
C1	0.95817	0.04183	0.0851	0.125	0.58818	
C2	0.95552	0.04448	0.12233	0.125	0.30176	
C3	0.91324	0.08676	0.19077	0.125	0.4033	
C4	0.82974	0.17026	0.22989	0.125	0.40361	

References

- J. Li, M. Barrio, D. J. Dunstan, R. Dixey, X. Lou, J. L. Tamarit, A. E. Phillips and P. Lloveras, *Adv. Funct. Mater.*, 2021, **31**, 1–8.
- Q. Ren, J. Qi, D. Yu, Z. Zhang, R. Song, W. Song, B. Yuan, T. Wang, W. Ren, Z. Zhang, X. Tong and B. Li, *Nat. Commun.*, 2022, 13, 1–9.
- Y. Gao, H. Liu, F. Hu, H. Song, H. Zhang, J. Hao, X. Liu, Z. Yu, F. Shen, Y. Wang, H. Zhou, B. Wang, Z. Tian, Y. Lin, C. Zhang, Z. Yin, J. Wang, Y. Chen, Y. Li, Y. Song, Y. Shi, T. Zhao, J. Sun, Q. Huang and B. Shen, NPG Asia Mater., , DOI:10.1038/s41427-022-00378-4.
- 4 M. V. Gorev, E. V. Bogdanov, I. N. Flerov, A. G. Kocharova and N. M. Laptash, *Phys. Solid State*, 2010, **52**, 167–175.
- 5 J. Salgado-Beceiro, J. M. Bermúdez-García, E. Stern-Taulats, J. García-Ben, S. Castro-García, M. Sánchez-Andújar, X. Moya and M. A. Señarís-Rodríguez, *ChemRxiv*, 2021, 17–19.
- A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J. L. Tamarit, W. Xiong, D. Cong, C. Popescu and L. Mañosa, *Phys. Rev. Mater.*, 2019, 3, 1–7.
- L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J. L. Tamarit, S. Aksoy and M. Acet, *Nat. Mater.*, 2010, 9, 478–481.
- L. Mañosa, D. González-Alonso, A. Planes, M. Barrio, J. L. Tamarit, I. S. Titov, M.
 Acet, A. Bhattacharyya and S. Majumdar, *Nat. Commun.*, 2011, 2, 1–5.
- J. Salgado-Beceiro, A. Nonato, R. X. Silva, A. García-Fernández, M. Sánchez-Andújar,
 S. Castro-García, E. Stern-Taulats, M. A. Señarís-Rodríguez, X. Moya and J. M.
 Bermúdez-García, *Mater. Adv.*, 2020, 1, 3167–3170.
- D. Boldrin, E. Mendive-Tapia, J. Zemen, J. B. Staunton, T. Hansen, A. Aznar, J. L. Tamarit, M. Barrio, P. Lloveras, J. Kim, X. Moya and L. F. Cohen, *Phys. Rev. X*, 2018, 8, 41035.
- J. M. Bermúdez-García, M. Sánchez-Andújar, S. Castro-García, J. López-Beceiro, R. Artiaga and M. A. Señarís-Rodríguez, *Nat. Commun.*, DOI:10.1038/ncomms15715.
- S. Yuce, M. Barrio, B. Emre, E. Stern-Taulats, A. Planes, J. L. Tamarit, Y. Mudryk, K.
 A. Gschneidner, V. K. Pecharsky and L. Mañosa, *Appl. Phys. Lett.*, ,
 DOI:10.1063/1.4745920.
- 13 J. M. Bermúdez-García, S. Yáñez-Vilar, A. García-Fernández, M. Sánchez-Andújar, S. Castro-García, J. López-Beceiro, R. Artiaga, M. Dilshad, X. Moya and M. A. Señarís-Rodríguez, *J. Mater. Chem. C*, 2018, 6, 9867–9874.

- J. Lin, P. Tong, X. Zhang, Z. Wang, Z. Zhang, B. Li, G. Zhong, J. Chen, Y. Wu, H. Lu,
 L. He, B. Bai, L. Ling, W. Song, Z. Zhang and Y. Sun, *Mater. Horizons*, 2020, 7, 2690–2695.
- 15 M. Szafrański, W. J. Wei, Z. M. Wang, W. Li and A. Katrusiak, APL Mater., , DOI:10.1063/1.5049116.
- X. He, S. Wei, Y. Kang, Y. Zhang, Y. Cao, K. Xu, Z. Li and C. Jing, Scr. Mater., 2018, 145, 58–61.
- S. P. Vallone, A. N. Tantillo, A. M. dos Santos, J. J. Molaison, R. Kulmaczewski, A. Chapoy, P. Ahmadi, M. A. Halcrow and K. G. Sandeman, *Adv. Mater.*, 2019, **31**, 1–7.
- E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J. L. Tamarit, S. Pramanick, S.
 Majumdar, S. Yüce, B. Emre, C. Frontera and L. Mañosa, *Acta Mater.*, 2015, 96, 324–332.
- P. J. Von Ranke, B. P. Alho, R. M. Ribas, E. P. Nobrega, A. Caldas, V. S. R. De Sousa,
 M. V. Colaço, L. F. Marques, D. L. Rocco and P. O. Ribeiro, *Phys. Rev. B*, 2018, 98, 2–6.
- 20 H. Liu, Z. Li, Y. Zhang, Z. Ni, K. Xu and Y. Liu, Scr. Mater., 2020, 177, 1–5.
- M. Romanini, Y. Wang, G. Kübra, G. Ornelas, P. Lloveras, Y. Zhang, W. Zheng, M. Barrio, A. Aznar, A. Gràcia-Condal, B. Emre, O. Atakol, C. Popescu, H. Zhang, Y. Long, L. Balicas, J. L. Tamarit, A. Planes, M. Shatruk and L. Mañosa, *Adv. Mater.*, 2021, 33, 2008076.
- 22 P. Lloveras, T. Samanta, M. Barrio, I. Dubenko, N. Ali, J. L. Tamarit and S. Stadler, *APL Mater.*, 2019, **7**, 0–9.
- J. Seo, J. D. Braun, V. M. Dev and J. A. Mason, J. Am. Chem. Soc., 2022, 144, 6493–6503.
- A. Aznar, P. Lloveras, J. Y. Kim, E. Stern-Taulats, M. Barrio, J. L. Tamarit, C. F. Sánchez-Valdés, J. L. Sánchez Llamazares, N. D. Mathur and X. Moya, *Adv. Mater.*, 2019, 31, 1–6.
- A. Aznar, P. Lloveras, M. M. Barrio, P. Negrier, A. Planes, L. L. Mañosa, N. D.
 Mathur, X. Moya and J. L. L. Tamarit, *J. Mater. Chem. A*, 2020, 8, 639–647.
- 26 D. Matsunami, A. Fujita, K. Takenaka and M. Kano, *Nat. Mater.*, 2015, 14, 73–78.
- P. Lloveras, A. Aznar, M. Barrio, P. Negrier, C. Popescu, A. Planes, L. Mañosa, E. Stern-Taulats, A. Avramenko, N. D. Mathur, X. Moya and J. L. Tamarit, *Nat. Commun.*, 2019, **10**, 1–7.
- 28 Z. Wei, Y. Shen, Z. Zhang, J. Guo, B. Li, E. Liu, Z. Zhang and J. Liu, APL Mater., ,

DOI:10.1063/5.0005021.

- 29 A. Salvatori, P. Negrier, A. Aznar, M. Barrio, J. L. Tamarit and P. Lloveras, , DOI:10.1063/5.0127667.
- A. Aznar, P. Negrier, A. Planes, L. Mañosa, E. Stern-Taulats, X. Moya, M. Barrio, J. L.
 Tamarit and P. Lloveras, *Appl. Mater. Today*, 2021, 23, 101023.
- 31 K. Zhang, R. Song, J. Qi, Z. Zhang, Z. Zhang, C. Yu, K. Li, Z. Zhang and B. Li, *Adv. Funct. Mater.*, DOI:10.1002/adfm.202112622.
- 32 E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J. L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera and L. Mañosa, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2014, 89, 1–8.
- R. R. Wu, L. F. Bao, F. X. Hu, H. Wu, Q. Z. Huang, J. Wang, X. L. Dong, G. N. Li, J.
 R. Sun, F. R. Shen, T. Y. Zhao, X. Q. Zheng, L. C. Wang, Y. Liu, W. L. Zuo, Y. Y.
 Zhao, M. Zhang, X. C. Wang, C. Q. Jin, G. H. Rao, X. F. Han and B. G. Shen, *Sci. Rep.*, 2015, 5, 1–11.
- X. J. He, K. Xu, S. X. Wei, Y. L. Zhang, Z. Li and C. Jing, J. Mater. Sci., 2017, 52, 2915–2923.
- 35 X. He, Y. Kang, S. Wei, Y. Zhang, Y. Cao, K. Xu, Z. Li, C. Jing and Z. Li, *J. Alloys Compd.*, 2018, 741, 821–825.
- 36 J. Li, D. Dunstan, X. Lou, A. Planes, L. Mañosa, M. Barrio, J. L. Tamarit and P. Lloveras, J. Mater. Chem. A, 2020, 8, 20354–20362.
- W. Imamura, É. O. Usuda, L. S. Paixão, N. M. Bom, A. M. Gomes and A. M. G.
 Carvalho, *Chinese J. Polym. Sci. (English Ed.*, 2020, 38, 999–1005.
- 38 E. O. Usuda, N. M. Bom and A. M. G. Carvalho, *Eur. Polym. J.*, 2017, **92**, 287–293.
- 39 P. J. von Ranke, B. P. Alho and P. O. Ribeiro, J. Alloys Compd., 2018, 749, 556–560.
- 40 M. V. Gorev, E. V. Bogdanov, I. N. Flerov, V. N. Voronov and N. M. Laptash, *Ferroelectrics*, 2010, **397**, 76–80.