1 Understanding the role of surface oxygen-containing functional groups

2 on carbon-supported cobalt catalysts for oxygen evolution reaction

3 Thi Ha My Pham,^{a,b} Youngdon Ko,^{a,b} Manhui Wei,^{a,b,c} Kangning Zhao,^d Liping Zhong,^{a,b,*} Andreas Züttel^{a,b}

4

- 5 aLaboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering
- 6 (ISIC), Basic Science Faculty (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis,
- 7 Energypolis, Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- 8 ^bEMPA Materials & Technology, CH-8600 Dübendorf, Switzerland
- 9 ^cSchool of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- 10 ^dLaboratory of Advanced Separations, Ecole Polytechnique Federale de Lausanne, Sion, Switzerland

- 12
- 13 E-mail: liping.zhong@epfl.ch

- 16 Figure S1 N_2 adsorption-desorption as a function of relative pressure, acquired by N_2 -adsorption measurements on
- 17 the four fresh supports.

- 19 Table S1 Summary of the BET surface area of the four fresh supports, derived from the N_2 adsorption-desorption
- 20 measurements using BET method.

Support	BET surface area (m ² g ⁻¹)
CNT	368
ACB	107
СВ	74
GNP	310

24 Figure S2 Double-layer capacitance measurements for different carbon supports. The sub-figures plot the current as

25 a function different scan rate.

30 Figure S3 Linear regression of the measured charging currents as a function of the scan rate. The slope of the line

35 Figure S4 XPS C 1s spectra of the four supports, and the fitted peaks for carbon (C=C and C-C), surface oxygen

 $\,$ containing groups (COH, COOH and C=O), and surface carbon oxygenates $\,$

	Oxygen (%)	СОН (%)	СООН (%)	C=O (%)
GNP	3.32	1.48	0.32	1.37
СВ	3.51	1.32	0.32	1.72
ACB	1.15	0.38	0.21	0.49
CNT	0.65	0.12	0.23	0.31

39 Table S2 Summary of the surface concentration of oxygen and s-OFGs, measured on the four fresh supports.

- 41 Table S3 Co contents in the synthesized catalysts: GNP-0.5, CNT-0.5, CB-0.5 and ACB-0.5, averaged from 2 sets of
- 42 measurements

Co concentration (%)			
GNP	0.51 ± 0.01		
CNT	0.57 ± 0.23		
СВ	0.46 ± 0.23		
ACB	0.53 ± 0.10		

- 46 Figure S5 HAADF-STEM images and the corresponding elemental maps for C and Co, obtained at two different regions
- 47 on GNP-0.5.

- 51 Figure S6 HAADF-STEM images and the corresponding elemental maps for C and Co, obtained at two different regions
- 52 on CNT-0.5.
- 53
- 54

56 Figure S7 HAADF-STEM images and the corresponding elemental maps for C and Co, obtained at two different regions

57 on CB-0.5.

- 60
- 61 Figure S8 HAADF-STEM images and the corresponding elemental maps for C and Co, obtained at two different regions
- 62 on ACB-0.5.
- 63

66 Figure S9 Nyquist plot and the fitted curve according to the corresponding equivalent circuit. The EIS was acquired

 $\,$ at 1.5 V vs RHE, with a perturbation amplitude of ±10 mV, from 100 kHz to 0.1 Hz. $\,$

70 Figure S10 a) Tafel plots and b) the corresponding Tafel slopes of Co- catalyst supported on four different carbons.

72 Table S4 Mass activities of previously reported Co-based catalysts.

References	Samples	Overpotential (V vs RHE)	Mass activity (A g ⁻¹)
A ^[1]	Co SAC	1.65	2209
B ^[2]	B ^[2] BN/CA-NiCoFe-600		201
C ^[3]	C ^[3] Co _{0.7} Fe _{0.3} CB		643
D ^[4] Ir-networks (Ir:Co = 1:55)		1.53	800
E ^[5]	SL-Co(OH) ₂	1.58	153.8
F ^[6] Au–Co(OH) ₂		1.5	177
G ^[7] γ-CoOOH nanosheets		1.53	66.6
H ^[8] YRCO-560		1.48	49.75
I ^[9]	EtOH-CoO	1.7	2900
J ^[10]	$ECA-Co_xNi_{1-x}S_2$	1.57	217

- Table S5 Summary of I_d/I_g ratio of the fresh- and doped- carbon, determined with Raman spectroscopy. The presented
- 79 value was obtained from at least 10 different regions.

Support	Fresh	With Co doping
GNP	0.11 ± 0.02	0.15 ± 0.06
CNT	0.76 ± 0.11	0.79 ± 0.09
СВ	1.11 ± 0.04	1.22 ± 0.04
ACB	1.12 ± 0.03	1.20 ± 0.04

 $\,$ Figure S11 The gain in I_d/I_g between before and after Co-incorporation. This value is calculated as the quotient

 $85 \quad \text{between } [I_d/I_{g[\text{Co-doped}]} - I_d/I_{g[\text{fresh support}]}] \text{ and } [I_d/I_{g[\text{fresh support}]}].$

89 Figure S12 XPS C 1s spectra of GNP-0.5-Air and GNP-0.5 and the corresponding deconvoluted peaks.

- 91 Table S6 Summary of the s-OFGs surface concentration on the fresh GNP support, GNP-0.5-Air and GNP-0.5. The s-
- 92 OFGs surface concentration is the ratio [area of s-OFGs fitted in O 1s spectra] to [total area of carbon in C 1s spectra].

	GNP support	GNP-0.5-Air	GNP-0.5
Oxygen surface contents (%)	3.21	3.47	4.37
C=O surface concentration (%)	1.37	1.53	1.00
COH surface concentration (%)	1.48	1.49	1.96
COOH surface concentration (%)	0.32	0.27	1.15

- 96 Figure S13 Specific COOH surface concentration and geometric current density at an overpotential of 450 mV of GNP-
- 97 0.5-Air and GNP-0.5.

Figure S14 a) Raman spectroscopy including the peaks of Co₃O₄, acquired on GNP-0.5, GNP-0.5-Air and on commercial

 $101\quad$ Co_3O_4. b) the Tafel slopes of GNP-0.5 and GNP-0.5-Air

104 Figure S15 Summary of the limiting current density, calculated from LSV of GNP-0.5-Air and GNP-0.5, in Fe-free KOH

105 1M, scanned from 1.5 to 2.2 V vs RHE at a scan rate of 10 mV s⁻¹. The potential was corrected with 85% of iR-drop.

108 Figure S16 CVs of GNP, GNP-0.05 and GNP-0.1 loadings in Fe-free 1M KOH solution, scanned from 1.0–1.7 V vs RHE

- 109 at a scan rate of 10 mV s⁻¹. CV curves were iR-corrected (85% iR drop compensation) and averaged across the forward
- 110~ and backward scans.

- 112 Table S7 Co contents in the synthesized catalysts with different Co loadings: GNP-0.5, GNP-4.8, GNP-9.1, GNP-17 and
- 113 GNP-29, averaged from 3 sets of measurements

Theoretical loading	Co concentration by ICP-OES
0.5	0.51 ± 0.01
4.8	4.67 ± 0.71
9.1	10.88 ± 0.21
17	17.72 ± 4.33
29	29.62 ± 6.81

117 Figure S17 HAADF-STEM images and the corresponding elemental maps for C and Co of GNP-4.8. Scale bar: 100 nm.

120 Figure S18 HAADF-STEM images and the corresponding elemental maps for C and Co of GNP-9.1. Scale bar: 100 nm.

123 Figure S19 HAADF-STEM images and the corresponding elemental maps for C and Co of GNP-17. Scale bar: $1 \, \mu m$.

126 Figure S20 HAADF-STEM images and the corresponding elemental maps for C and Co of GNP-29. Scale bar: 200 nm.

129 Figure S21 XRD patterns of the Co-based catalysts supported on GNP at different Co loadings and the reference bulk

130 oxide phases (CoO PDF 1541662, Co₃O₄ PDF 1548531)

- 133 Figure S22 Raman spectroscopy including the peaks of Co₃O₄, acquired on Co-catalyst supported on GNP at various
- 134 Co loadings and on commercial Co_3O_4 .

- $136 \quad \text{Table S8 Summary of } I_{\text{d}}/I_{\text{g}} \text{ ratio of the Co-based catalysts supported on GNP at different Co loadings, determined with}$
- 137 Raman spectroscopy. The presented value was obtained from at least 10 different regions. The gain in I_d/I_g between
- $138 \quad \text{before and after Co-incorporation is calculated as the quotient between } [I_d/I_{g[Co-doped]} I_d/I_{g[fresh \, GNP]}] \text{ and } [I_d/I_{g[fresh \, GNP]}].$

Co loading	I _d /I _g	Gain in I _d /I _g (%)
0	0.114 ± 0.023	
0.5	0.148 ± 0.056	29.410
4.8	0.154 ± 0.085	34.586
9.1	0.141 ± 0.034	23.434
17	0.140 ± 0.023	22.065
29	0.154 ± 0.051	34.250

142 Figure S23 XPS spectra of different Co-catalyst supported on GNP, at various Co loadings. a) XPS O 1s spectra and b)

 $\,$ XPS C 1s spectra and the corresponding deconvoluted peaks.

147 Figure S24 Surface concentration of COH, COOH and C=O, measured on Co-based catalysts supported on GNP at

148 different Co loadings.

- 151 Table S9 Summary of the surface concentration of COH, COOH and C=O, measured on Co-based catalysts supported
- 152 on GNP at different Co loadings.

Co loading (%)	C-OH	О=С- <u>О</u> Н	C=O
0.5	1.96	1.15	1.00
4.8	1.34	0.24	2.41
9.1	1.39	0.18	3.18
17	1.89	0.40	4.36
29	1.62	0.28	5.47

156 Figure S25 Summary of the mass activities at 1.7 V vs RHE of GNP-0.5, GNP-4.8, GNP-9.1, GNP-17 and GNP-29 in Fe-

157 free 1M KOH solution, at various surface loadings.

160 Figure S26 OER activity of commercial CoO and Co₃O₄. a) CV in Fe-free KOH 1M, scanned from 1.0 to 1.7 V vs RHE at

- a scan rate of 10 mV s⁻¹. The curves were corrected with 85% of iR-drop, and averaged from onward and backward
- 162 scans. b) The corresponding Tafel slopes.

164 Table S10 Summary of the surface concentration of COH, COOH and C=O, measured on Co-based catalysts supported

Co loading	Co-normalized C-	Co-normalized	Co-normalized	Co-normalized
(%)	OH (%)	U=C-UH (%)	C=O (%)	I _d /I _g
0.5	3.929	2.305	1.998	0.296
4.8	0.279	0.050	0.502	0.032
9.1	0.152	0.020	0.349	0.016
17	0.111	0.023	0.257	0.008
29	0.056	0.010	0.189	0.005

165~ on GNP at different Co loadings, normalized by the Co mass loading of the samples.

166

168 **REFERENCES**

- 169 [1] P. Kumar, K. Kannimuthu, A. S. Zeraati, S. Roy, X. Wang, X. Wang, S. Samanta, K. A. Miller, M. Molina,
- D. Trivedi, J. Abed, M. A. Campos Mata, H. Al-Mahayni, J. Baltrusaitis, G. Shimizu, Y. A. Wu, A.
 Seifitokaldani, E. H. Sargent, P. M. Ajayan, J. Hu, M. G. Kibria, *J. Am. Chem. Soc.* 2023, *145*, 8052.
- 172 [2] R. Lu, D. K. Sam, W. Wang, S. Gong, J. Liu, A. Durairaj, M. Li, X. Lv, *J. Colloid Interface Sci.* 2022, 613,
 173 126.
- 174 [3] L. Yang, H. Liu, H. Shen, Y. Huang, S. Wang, L. Zheng, D. Cao, Adv. Funct. Mater. 2020, 30, 1.
- A. W. Jensen, G. W. Sievers, K. D. Jensen, J. Quinson, J. A. Arminio-Ravelo, V. Brüser, M. Arenz, M.
 Escudero-Escribano, *J. Mater. Chem. A* **2020**, *8*, 1066.
- 177 [5] P. Jash, P. Srivastava, A. Paul, *Chem. Commun.* **2019**, *55*, 2230.
- 178 [6] C. Cai, S. Han, X. Zhang, J. Yu, X. Xiang, J. Yang, L. Qiao, X. Zu, Y. Chen, S. Li, *RSC Adv.* **2022**, *12*, 6205.
- I79 [7] J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, S. Wei, *Angew. Chemie Int. Ed.* 2015, *54*, 8722.
- 181 [8] M. Kim, B. Lee, H. Ju, S. W. Lee, J. Kim, Adv. Mater. 2019, 31, 1.
- 182 [9] A. Bähr, H. Petersen, H. Tüysüz, *ChemCatChem* **2021**, *13*, 3824.
- 183 [10] Y. R. Hong, S. Mhin, K. M. Kim, W. S. Han, H. Choi, G. Ali, K. Y. Chung, H. J. Lee, S. I. Moon, S. Dutta, S.
 184 Sun, Y. G. Jung, T. Song, H. S. Han, *J. Mater. Chem. A* **2019**, *7*, 3592.