Supporting Information

Two-dimensional Janus perovskite oxynitrides as active photocatalysts for overall water splitting with ferroelectric modulation

Zhichao Yu¹, Bowen Li¹, Haoyun Bai¹, Hui Pan^{1,2*}

¹ Institute of Applied Physics and Materials Engineering, University of Macau,

Macao SAR 999708, P. R. China

² Department of Physics and Chemistry, Faculty of Science and Technology,

University of Macau, Macao SAR 999078, P. R. China

*E-mail: <u>huipan@um.edu.mo</u>

	C ₁₁	C ₁₂	C ₂₂	C ₆₆
BaTaNO ₂ -1	671	213	671	265
BaNbNO ₂ -1	596	183	596	254
BaVNO ₂ -1	131	111	386	161

Table S1. In-plane elastic constants of BaTaNO₂-1, BaNbNO₂-1 and BaVNO₂-1(kBar)

Figure S1: Phonon dispersions of (a) BaNbNO₂-2, (b) BaNbNO₂-3, (c) BaTaNO₂-1, (d) BaTaNO₂-2, and (e) BaTaNO₂-3.

Figure S2: Structure of (a) BaNbNO₂-1 and (b) BaTaNO₂-1 after AIMD for 5 ps. (c) Total energy (orange) and temperature (olive) of BaTaNO₂-1 as a function of time during AIMD.

Figure S3: Band structures (olive) and projected band structures (orange) of Nb/Ta- d_{xy} orbitals of (a) BaNbNO₂-1, (b) BaNbNO₂-3, (d) BaTaNO₂-1, (e) BaTaNO₂-2, and (f) BaTaNO₂-3. (c) Relations between band gap and thickness of BaXNO₂-n (X = Nb, Ta).

Figure S5: Electrostatic potentials of (a) $BaNbNO_2-1$, (b) $BaNbNO_2-3$, (d) $BaTaNO_2-1$, (e) $BaTaNO_2-2$, and (f) $BaTaNO_2-3$ along the z direction. (c) Relation between electrostatic potential and thickness of $BaXNO_2-n$ (X = Nb, Ta).

Figure S6: Band gap of BaXNO₂ (X = Nb, Ta) as a function of $\Delta \Phi$.

Figure S7: Layer-dependent projected band structure of BaNbNO₂-3. The small gap of BaNbNO₂-3 comes from the conduction band of bottom layer which constitutes the final CBM of BaNbNO₂-3 and the valence band of top layer which constitutes the final VBM of BaNbNO₂-3 locate close to each other. The shapes of the layer-dependent band vary a little which is as expected, given interlayer influence should be weak. The gaps of each layer also keep almost same. The only difference lies on the relative energy levels and this trend is easy to understand given its built-in electric field and electrostatic potential difference.

Figure S8: Free energy diagrams of (a) OER and (b) HER for BaTaNO₂-1 (olive), BaTaNO₂-2 (orange), and BaTaNO₂-3 (royal).

Figure S10: Center-symmetric $BaVNO_2$ -1. (a) Top and (b) side views. (c) Phonon dispersion. (d) Top and (e) side views with the in-plane opposite displacements of V and O ions. The direction of the in-plane ferroelectric distortion is marked by green and yellow arrows.

Figure S11: Top views and side views of (a), (d) FE BaVNO₂-1, (b), (e) AFE BaVNO₂-2, and (c), (f) FE BaVNO₂-3.

Figure S12: Phonon dispersions of (a) FE BaVNO₂-1, (b) FE BaVNO₂-2, (c) AFE BaVNO₂-2, and (d) FE BaVNO₂-3

Figure S13: (a) Top and (b) side view of FE BaVNO₂-1 after AIMD for \sim 5 ps. (c) Total energy (orange) and temperature (olive) of FE BaVNO₂-1 as a function of time.

Figure S14: Schematic diagram of ferroelastic switching for FE BaVNO₂-2.

Figure S15: Schematic diagram of ferroelastic switching for AFE BaVNO₂-2.

Figure S16: Band structures (olive) and projected band structures (orange) of V- d_{xy} orbitals: (a) FE BaVNO₂-1, (b) AFE BaVNO₂-2, and (c) FE BaVNO₂-3.

Figure S17: Band decomposed charge density of CBM. Top views and side views: (a), (d) BaNbNO₂-2, (b), (e) PE BaVNO₂-2, and (c), (f) FE BaVNO₂-2.

Figure S18: Electrostatic potential of (a) FE BaVNO₂-1, (b) FE BaVNO₂-2, (c) AFE BaVNO₂-2, and (d) FE BaVNO₂-3 along the z direction.

Figure S19: (a) Side view and (b) Top view of BaVNO₂-2 with OH adsorbed (*OH). (c) Side view and (d) Top view of BaVNO₂-2 absorbing H (*H). Free energy diagrams of (e) OER and (f) HER of FE BaVNO₂-2.

Figure S20: Electrostatic potential of $BaNbNO_2-1/BaVNO_2-1$ heterostructure along the z direction.

Figure S21: A full comparison of bi-functional activity with the state-of-art photocatalysts for overall water splitting.