Supplementary Information

Highly crystalline and robust covalent organic framework membranes

for predictable solvent transport and molecular separation

Hukang Guo^{*a*, *b*}, Jianxiao Jiang^{*a*, *b*}, Chuanjie Fang^{*a*, *b*, *}, Liping Zhu^{*a*, *b*, *c*, *}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China

^b MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China

^c Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, P.R. China

* Corresponding author Dr. Fang, fangchuanjie@zju.edu.cn Prof. Zhu, lpzhu@zju.edu.cn

1.	Supporting Figures	3
2.	Supporting Tables	.14
3.	References	.16

1. Figures

Fig. S1. Digital photograph of a homemade diffusion cell used for the growth of a COF-

DT layer on a PAN support via interface polymerization.

Fig. S2. Digital photograph of the COF-DT-2.7/PAN membrane.

Fig. S3. ATR-FTIR spectra of the COF-DT/PAN and pristine PAN membranes.

Fig. S4. XPS spectra of the COF-DT/PAN and pristine PAN membranes.

Fig. S5. High-resolution XPS spectra of C 1s (a), N 1s (b), and O 1s (c) for the COF-

DT/PAN membrane.

Fig. S6. Unit cell of the AA stacking mode of the COF-DT (O, red; N, blue; C, grey).

Fig. S7. BET plot calculated from the N₂ adsorption isotherm.

Fig. S8. HRTEM images of the COF-DT-2.7 film under different magnifications.

Fig. S9. Digital photographs of COF-DT-2.7 films before and after treatment for one week in methanol (a), hexane (b), and THF (c).

Fig. S10. TGA and DTG curves of the COF-DT-2.7 film under N_2 .

Fig. S11. AFM images of the COF-DT-2.7 film measured by height (a), peak force (b),

and Young's modulus (c) modes.

Fig. S12. Surface SEM images of the PAN (a), COF-DT-0.9/PAN (b), COF-DT-1.2/PAN (c), COF-DT-1.5/PAN (d), COF-DT-1.8/PAN (e), COF-DT-2.1/PAN (f), COF-DT-2.4/PAN (g), COF-DT-2.7/PAN (h), COF-DT-3.0/PAN (i) membranes.

Fig. S13. Cross-section SEM images of the PAN (a), COF-DT-0.9/PAN (b), COF-DT-1.2/PAN (c), COF-DT-1.5/PAN (d), COF-DT-1.8/PAN (e), COF-DT-2.1/PAN (f), COF-DT-2.4/PAN (g), COF-DT-2.7/PAN (h), COF-DT-3.0/PAN (i) membranes.

Fig. S14. Cross-section SEM images of the COF-DT-3.0/PAN membrane with different magnification factors.

Fig. S15. XRD patterns of various COF-DT/PAN membranes prepared using different TAPB concentrations.

Fig. S16. Microscopic images of the COF-DT-2.1 (a), COF-DT-2.4 (b), COF-DT-2.7

(c), COF-DT-3.0 (d) films.

Fig. S17. Water contact angels of the PAN (a), COF-DT-1.8/PAN (b), COF-DT-2.1/PAN (c), COF-DT-2.4/PAN (d), COF-DT-2.7/PAN (e), COF-DT-3.0/PAN (f) membranes.

Fig. S18. The plots of solvent viscosity (a), relative polarity (b), and kinetic diameter (c) versus solvent permeance through the COF-DT-2.7/PAN membrane.

Fig. S19. Product of solvent permeance and viscosity as a function of the total Hansen solubility parameter for the COF-DT-2.7/PAN membrane.

Fig. S20. UV-vis absorption spectra of various dye solution in ethanol (20 ppm) before and after filtration through the COF-DT-2.7/PAN membrane.

Fig. S21. Long-term separation stability of the COF-DT-2.7/PAN membrane toward the ethanolic AB solution in a crossflow filtration under 4 bar.

2. Tables

Dye	Structure	Molecular size (Å)	Molecular weight (g/mol)	Charge	UV-vis absorption peak (nm)
Solvent yellow 2	****	15.7×7.0×4.1	225.29	0	408
Methyl orange	\$ \$ \$~ \$ \$	18.6×7.4×6.6	327.33	_	420
Sunset yellow	بېگنې ې.	19.7×9.8×7.1	452.36	_	482
Vitamin B12		22.6×17.1×7.0	1355.38	0	362
Reactive red 120		25.3×17.2×12.4	1469.98	_	545

Table S1. Detailed properties of different dye molecules used in this work.

Table S2. Element compositions of membranes.

Membranes	C (%)	N (%)	O (%)
PAN	66.8	3.9	29.3
COF-DT	80.4	5.5	14.1

Table S3. Solvent properties.

Solvent	Viscosity at 25 °C (mPa s) ¹	Relative polarity 2, 3	Kinetic diameter (nm) ^{1, 4}	TotalHansensolubilityparameter(MPa ^{0.5}) 1
Isopropanol	2.06	0.546	0.47	23.5
Ethanol	1.08	0.654	0.44	26.6
Water	0.92	1	0.27	47.8
Methanol	0.54	0.762	0.38	29.7
THF	0.46	0.207	0.48	19.5
Hexane	0.29	0.009	0.51	14.9

3. References

1. A. Buekenhoudt, F. Bisignano, G. De Luca, P. Vandezande, M. Wouters and K. Verhulst, *J. Membr. Sci.*, 2013, **439**, 36-47.

2. Q. Yang, Y. Su, C. Chi, C. T. Cherian, K. Huang, V. G. Kravets, F. C. Wang, J. C. Zhang, A. Pratt, A.

N. Grigorenko, F. Guinea, A. K. Geim and R. R. Nair, Nat. Mater., 2017, 16, 1198-1202.

3. P. J. Linstrom and W. G. Mallard, J. Chem. Eng. Data, 2001, 46, 1059-1063.

4. J. Liu, S. Wang, T. Huang, P. Manchanda, E. Abou-Hamad and S. P. Nunes, *Sci Adv*, 2020, **6**, eabb3188.