High-performance Ruddlesden-Popper perovskite oxide with in-situ exsolved nanoparticles for direct CO_{2} electrolysis

Ka-Young Park, Taehee Lee, Wanhua Wang, Haixia Li, and Fanglin Chen*
${ }^{\text {a }}$ Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208

* Corresponding author's contact information: chenfa@cec.sc.edu

Figure S1. Rietveld refinement for XRD spectra fitted with observed (y_obs) and calculated (y_calc) XRD patterns, and the difference (y_diff) between the y_obs and y_calc: (a) PSMF and (b) RP-PSMF

Figure S2. The SEM images of the LSGM electrolyte-supported cell (Configuration: PSMFGDC \mid LSGM \mid LSCF-GDC) for direct CO_{2} electrolysis operation: (a) cross-sectional image of the single cell, (b) LSCF-GDC, and (c) PSMF-GDC layers

Figure S3. The current-voltage ($I-V$) polarization curve of the LSGM electrolyte-supported cell (Configuration: PSMF-GDC \mid LSGM \mid LSCF-GDC) at $800^{\circ} \mathrm{C}$ while feeding H_{2} to fuel electrode and exposing ambient air to air electrode.

Figure S4. The EIS spectra of the LSGM electrolyte-supported cell (Configuration: PSMF/GDC |LSGM | LSCF/GDC) at $800^{\circ} \mathrm{C}$ under various applied voltages from OCV to 1.4 V .

Table S1. The results of XPS fitting for the $\mathrm{Fe} 2 \mathrm{P}_{3 / 2}$ and $\mathrm{Mn} 2 \mathrm{P}_{3 / 2}$ peaks

PSMF $\mathrm{Fe} 2 \mathrm{P}_{3 / 2}\left(\chi^{2}=0.95\right)$				RP-PSMF $\mathrm{Fe} 2 \mathrm{P}_{3 / 2}\left(\chi^{2}=1.38\right)$			
Peak	Position(eV)	Area (\%)	FWHM(eV)	Peak	Position(eV)	Area (\%)	FWHM(eV)
Fe^{0}	-	-	-	Fe^{0}	705.9	20.6	3.0
Fe^{2+}	709.4	29.9	2.5	Fe^{2+}	709.4	46.5	3.2
Fe^{3+}	710.7	46.4	2.8	Fe^{3+}	710.7	32.9	3.3
Fe^{4+}	712.4	23.7	3.0	Fe^{4+}	-	-	-
PSMF				RP-PSMF			
$\operatorname{Mn} 2 \mathrm{P}_{3 / 2}\left(\chi^{2}=1.56\right)$				$\operatorname{Mn} 2 \mathrm{P}_{3 / 2}\left(\chi^{2}=1.83\right)$			
Peak	Position(eV)	Area (\%)	FWHM(eV)	Peak	Position(eV)	Area (\%)	FWHM(eV)
Mn^{2+}	-	-	-	Mn^{2+}	640.4	53.9	3.6
Mn^{3+}	641.4	27.8	2.7	Mn^{3+}	641.4	46.1	3.2
Mn^{4+}	642.1	72.2	2.9	Mn^{4+}	-	-	-

