Morphology-dependent enhancement of the electrochemical performance of

CNF-guided tunable VS₄ heterostructures for symmetric supercapacitors

Saad Zafar¹, Arpit Thomas², Soumyasri Nikhilesh Mahapatra¹, Naiwrit Karmodak³, Harpreet Singh Arora^{2*}, Bimlesh Lochab^{1*}

¹Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

²Surface and Tribology Laboratory, Department of Mechanical Engineering, School of Natural Science, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

³Computational Materials and Electrocatalysis Lab, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Table of content:

Figure S1. Scanning electron microscopy (SEM) images of (a-b) $VS_4@CNF_x$, and (c-d)

VS₄@CNF_{3x} at different magnifications.....S2

Figure S2. BJH pore size distribution curve of VS₄@CNF_{x-3x} composite.....S3

Figure S3. XPS (a) stacked spectra of VS₄ and VS₄@CNF_{2x}, and deconvoluted XPS peaks for VS₄ (b) V and (c) S, respectively.....S4

Figure S4. (a) CV curve of VS_4 at different scan rates, and (b) GCD curve of VS_4 at different current density.....S5

Figure S5. Calculating the slope b obtained by plotting log (i) vs log (v).....S5

Figure S6. The equivalent electrical circuit fit for $VS_4@CNF_x$, $VS_4@CNF_{2x}$, and $VS_4@CNF_{3x}$S6

Table S1. EIS fitted parameters of VS4@CNFx, VS4@CNF2x, and VS4@CNF3x based SC....S6

Table S2. Comparison of $VS_4@CNF_{2x}$ electrode performance with the other reported materials.S7

Figure S1. Scanning electron microscopy (SEM) images of (a-b) $VS_4@CNF_x$, and (c-d) $VS_4@CNF_{3x}$ at different magnifications.

Figure S2. BJH pore size distribution curve of $VS_4@CNF_{x-3x}$ composite.

Figure S3. XPS (a) stacked spectra of VS₄ and VS₄@CNF_{2x}, and deconvoluted XPS peaks for VS₄ (b) V and (c) S, respectively.

Figure S4. (a) CV curve of VS_4 at different scan rates, and (b) GCD curve of VS_4 at different current density.

Figure S5. Calculating the slope b obtained by plotting log (i) vs log (v).

Figure S6. The equivalent electrical circuit fit for $VS_4@CNF_x$, $VS_4@CNF_{2x}$, and $VS_4@CNF_{3x}$.

Parameter	R _s	R _{P1}	CPE1	N1	R _{P2}	CPE2	N2	R _{P3}	CPE3	N3	W ₁
	(ohm)	(ohm)	$(S \times s^a)$		(ohm)	$(S \times s^a)$		(ohm)	$(S \times s^a)$		
			×10-3			×10-3		×10-3	×10-3		
VS ₄ @CNF _x	5.359	0.998	0.782	0.701	24.06	185.7	0.637	1.496	207	1	0.095
_											
VS4@CNF2x	5.100	0.485	0.336	0.835	13.28	103.1	0.741	1.076	304	0.851	0.019
VS4@CNF3x	5.274	1.295	0.391	0.508	24.81	204	0.705	4.32	238	0.932	0.029

 $\textbf{Table S1.} EIS \ fitted \ parameters \ of \ VS_4 @CNF_x, \ VS_4 @CNF_{2x}, \ and \ VS_4 @CNF_{3x} \ based \ SC.$

Electrode Material	Electrolyte	Specific	Retention	Energy Density	Power Density	
		Capacitance	(atter Cycles)	(W n kg ⁻¹)	(W Kg ⁻¹)	
VS ₄ nanorods ¹	1 M LiNO ₃	617 F/g @ 0.4 A/g	87.5% (1500)	55	-	
Hydrangea-like VS ₄	1 M Na ₂ SO ₃	533 F/g @ 0.1 A/g	80% (500)	60	-	
microsphere ²						
Anemone-like VS ₄	1 M LiNO ₃	617 F/g @ 0.4 A/g	87.5% (1500)	113.6	720	
microsphere3						
Petal shape VS ₄ /CNT ⁴	1 M LiClO ₄	330 F/g @ 1 A/g	63% (5000)	51.2	30.95	
VS ₄ /CNT/rGO ⁵	1 M LiClO ₄ /PC	490.7 F/g @ 1 A/g	50% (2000)	72.07	14.69	
VS ₄ /CNTs/RGO ⁶	0.5 M K ₂ SO ₄	558.7 F/g @ 1 A/g	90% (1000)	174.6	13.85	
NiS ₂ @NiV ₂ S ₄ ⁷	6 M KOH	520 C/g at 1 A/g	90% (10000)	19.4	140	
VS ₄ /rGO ⁸	1 M Na ₂ SO ₄	877 F/g @ 0.5 A/g	90% (1000)	117	20	
rGO-VS ₂ -WS ₂ ⁹	3 M KOH	220 F/g @ 1 A/g	-	30.55	355	
VS4@CNF2x This work	1 M KOH	840 F/g @ 1 A/g	86% (5000)	91	239	

Table S2. Comparison of $VS_4@CNF_{2x}$ electrode performance with the other reported materials.

References:

- 1. J.-K. Feng, J. Huang, H.-Y. Li and B. Xie, Cham, 2020.
- 2. Z.-W. Peng, K.-F. Jun, H.-Y. Li and B. Xie, Cham, 2019.
- 3. H.-Y. Li, J.-K. Feng, L. Xiang, J. Huang and B. Xie, *J. Power Sources*, 2020, **457**, 228031.
- 4. X. Wang, Y. Zhang, J. Zheng, X. Liu and C. Meng, *J. Colloid Interface Sci.*, 2019, **554**, 191-201.
- 5. X. Wang, Y. Zhang, J. Zheng, H. Jiang, X. Dong, X. Liu and C. Meng, J. Colloid Interface Sci., 2020, **574**, 312-323.
- 6. S. Ratha, S. R. Marri, J. N. Behera and C. S. Rout, *Eur. J. Inorg. Chem.*, 2016, **2016**, 259-265.
- 7. R. Manikandan, C. J. Raj, K. H. Yu and B. C. Kim, *Appl. Surf. Sci.*, 2019, **497**, 143778.
- 8. S. Ratha, S. R. Marri, N. A. Lanzillo, S. Moshkalev, S. K. Nayak, J. Behera and C. S. Rout, *J. Mater. Chem. A*, 2015, **3**, 18874-18881.
- 9. S. S. Magdum, S. Thangarasu and T. H. Oh, *Inorganics*, 2022, 10, 229.