Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Recyclable Fe₃O₄/MWCNT/CNF Composite Nanopaper as an Advanced Negative Electrode

for Flexibility Asymmetric Supercapacitors

Haoran Zhao ^a, Haidong Jin^a, Shenghui Li^a, Yahui Dong ^a, Shipeng Wang ^a, Qian Cheng^{a,*}, Yu Li^{b,*}

^a Key Laboratory of Bio-based Material Science & Technology(Ministry of Education), College of

Material Science and Engineering, Northeast Forestry University, Harbin 150040, China

^b College of Science, Northeast Forestry University, Harbin 150040, China

*Corresponding author. *E-mail addresses*: <u>chengqian66@163.com(Q. Cheng)</u> <u>liyu87043@163.com (Y. Li)</u>

Figure Content

Calculation methods

Table S1.	The raw materials ratio of the NFT@Fe-xyz nanopapers		
Fig. S1	TEM images of MWCNT@Fe ₃ O ₄ (the inset shows the size distribution of		
	Fe ₃ O ₄ nanoparticles)		
Fig. S2(a-f).	Digital photographs of the MWCNT@Fe ₃ O ₄ composites dispersed in ethanol		
	(left) and CNF (right) standing for (a) 0 s, (b) 20 s, (c) 40 s, (d) 80 s, (e) 120 s,		
	and (f) 25 d		
Fig. S3(a-f).	Digital photographs of MWCNT@Fe3O4 composites dispersed in ethanol		
	(left) and CNF (right) at sides of the magnet after (a) 0, (b) 1, (c) 2, (d) 3, (e)		
	4, and (f) 5 s.		
Fig. S4.	The zeta potential of CNF, MWCNT, MWCNT@Fe3O4, and NFT@Fe-xyz.		
Fig. S5.	The fracture energy of the NFT and NFT@Fe-xyz.		
Fig. S6.	The EDS spectrum of the NFT@Fe-712 composite nanopaper.		
Fig. S7.	$N_{\rm 2}$ adsorption–desorption isotherms and corresponding BJH pore-size		
	distribution curves (inset) of the NFT@Fe-712 and NFT		
Table S2.	Comparison of the reported Fe_3O_4 -based electrode and flexible cellulose-based		
	electrodes		
Fig. S8(a-i) .	The CV curves of (a) NFT@Fe-622, (b) NFT@Fe-532, (c) NFT@Fe-442, and		
	(d) NFT@Fe-802 at different scan rates and the capacitive contributions at 5		
	mV s ⁻¹ of (e) NFT@Fe-802, (f) NFT@Fe-712, (g) NFT@Fe-622, (h)		
	NFT@Fe-532, and (i) NFT@Fe-442.		

Fig. S9(a-f).	The GCD curves of (a) NFT@Fe-802, (b) NFT@Fe-622,(c) NFT@Fe-532 and
	(d) NFT@Fe-442 at different current densities; (e) the variation in the specific
	capacitance of the NFT@Fe-xyz nanopaper samples at different current
	densities; (f) long-term cycling performance of the NFT@Fe-712 at a current
	density of 5 A g^{-1} (inset shows the GCD curves of the last 10 cycles).
Fig. S10.	(a) SEM images, (b) elemental mapping of C, O, Fe, S, and (c) XRD of
	NFT@Fe-712 after long-term cycling
Table S3.	Equivalent series resistance of the NFT@Fe-xyz nanopaper samples

References

Calculation methods

Specific capacitance (C_p , F g⁻¹) with respect to a single electrode was calculated using CV profiles at different scan rates.

$$C_P = \frac{\int I d\nu}{2\nu \ m \ \Delta V} \#(S1)$$

Where, $\int I dv$ is the area under CV curve, v is the potential scan rate (V s⁻¹), m (g) is the mass of electrode and ΔV (V) is the potential window.

The mass capacitance of single electrode was estimated from the GCD curves at different current density using equations:

$$C_p = \frac{I\,\Delta t}{m\,\Delta V} \#(S2)$$

Where I(A) is the discharge current, $\Delta t(s)$ is the discharge time for potential window $\Delta V(V)$ and m(g) is the mass of electrode. To calculate areal capacitance, m(g) has been replaced with electrode area $A(cm^{-2})$.

To identify the combined characteristics of electrochemical capacitive and diffusion controlled processes of NFT@Fe, the relationship of current density (i) and corresponding the scan rate (v) can be evaluated the following equation:

$$i = av^b \#(S3)$$

$$\log (i) = blog(v) + \log (a) \#(S4)$$

Where, *a* and *b* present constants. The linear relationship between $\log(i)$ and $\log(v)$ can provide the value of *b*, which is an important indicator for evaluating the kinetics of redox reaction.

The dependence of voltametric current on scan rate form CV was used to calculate the capacitance proportion.

$$i(V) = K_1 v + K_2 v^{1/2} \#(S5)$$
$$\frac{i(V)}{v^{1/2}} = K_1 v^{1/2} + K_2 \#(S6)$$

Where, *i* represents a current density at the potential of *V*, $K_1 v$ and $K_2 v^{1/2}$ are the current contribute in capacitive-controlled and diffusion-controlled processes.

For a flexible asymmetric supercapacitor, charge balance between positive and negative electrodes follows equations:

$$Q^{+} = Q^{-} #(S7)$$

 $Q^{+} = C_{p}^{+} \Delta V m^{+} #(S8)$
 $Q^{-} = C_{p}^{-} \Delta V m^{-} #(S9)$

In which Q^+ and Q^- are the charge stored in positive and negative electrode, ΔV is the voltage window during the charge and discharge process. m^+ and m^- are the mass of positive and negative electrode, respectively.

 C_p (F g⁻¹), energy density (*E*, Wh kg⁻¹) and power density (*P*, W kg⁻¹) of ASC were evaluated using following equations:

$$E = \frac{0.5 C_p \Delta V^2}{3.6} \# (S10)$$
$$P = \frac{3600 E}{\Delta t} \# (S11)$$

Sample	MWCNT@Fe ₃ O ₄ /mg	MWCNT /mg	CNF /mg	Mass ratio
NFT@Fe-505	20	0	20	5:0:5
NFT@Fe-604	24	0	16	6:0:4
NFT@Fe-703	28	0	12	7:0:3
NFT@ Fe-802	32	0	8	8:0:2
NFT@ Fe-901	36	0	4	9:0:1
NFT@ Fe-712	28	4	8	7:1:2
NFT@ Fe-622	24	8	8	6:2:2
NFT@ Fe-532	20	12	8	5:3:2
NFT@ Fe-442	16	16	8	4:4:2
NFT	0	32	8	0:8:2

 Table S1. The raw materials ratio of the NFT@Fe-xyz nanopapers

Fig. S1. TEM images of MWCNT@Fe₃O₄ (the inset shows the size distribution of Fe_3O_4 nanoparticles)

Fig. S2. Digital photographs of the MWCNT@Fe₃O₄ composites dispersed in ethanol (left) and CNF (right) standing for (a) 0 s, (b) 20 s, (c) 40 s, (d) 80 s, (e) 120 s, and (f) 25 d

Fig. S3. Digital photographs of MWCNT@Fe₃O₄ composites dispersed in ethanol (left) and CNF (right) at sides of the magnet after (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5 s.

Fig. S4. The zeta potential of CNF, MWCNT, MWCNT@Fe₃O₄, and NFT@Fe-xyz.

Fig. S5. The fracture energy of the NFT and NFT@Fe-xyz.

Fig. S6. The EDS spectrum of the NFT@Fe-712 composite nanopaper.

Fig. S7. N₂ adsorption–desorption isotherms and corresponding BJH pore-size distribution curves (inset) of the NFT@Fe-712 and NFT

Materials	Specific capacitance	Scan rate (mV s ⁻¹)	Current density	Reference
Fe ₃ O ₄ -rGO	270 F g ⁻¹	5	-	1
$Fe_3O_4@Fe_2O_3$	231.9 F g ⁻¹	5	-	2
NCS@Fe ₃ O ₄	206 F g ⁻¹	-	1 A g ⁻¹	3
Fe ₃ O ₄ /Carbon Nanofiber	135 F g ⁻¹	5	-	4
Fe ₃ O ₄ -C	102 F g ⁻¹	5	-	5
CNF/MWCNT/RGO/Fe ₃ O ₄	169.3 F g ⁻¹	-	1 mA cm ⁻²	6
CNF/porous Co ₃ O ₄	594.8 mF cm ⁻²	5	-	7
PH-MWCNT(90-10 wt%)	121 mF cm ⁻²	5	-	8
CNF/MWCNT aerogel	114.8 F g ⁻¹	10	-	9
CNF/CNT/RGO-3	116.3 F g ⁻¹	-	0.1 A g ⁻¹	10
FWCNT/CNF buckypaper	167.6 F g ⁻¹	5	-	11
PGO/CNC	176.7 F g ⁻¹		0.5 A g ⁻¹	12
KOO/CINC	$(4.42 \text{ mF cm}^{-2})$	-		
$NET @ E_{2} 712$	229.9 F g ⁻¹ (735.68 mF cm ⁻²)	5	-	This work
NF 1@FC-/12	210.8 F g ⁻¹ (674.56 mF cm ⁻²)	-	0.5 A g ⁻¹	This work

Table S2. Comparison of the reported Fe₃O₄-based electrode and flexible cellulose-based electrodes

Fig. S8. The CV curves of (a) NFT@Fe-622, (b) NFT@Fe-532, (c) NFT@Fe-442, and (d) NFT@Fe-802 at different scan rates and the capacitive contributions at 5 mV s⁻¹ of (e) NFT@Fe-802, (f) NFT@Fe-712, (g) NFT@Fe-622, (h) NFT@Fe-532, and (i) NFT@Fe-442.

Fig. S9. The GCD curves of (a) NFT@Fe-802, (b) NFT@Fe-622,(c) NFT@Fe-532 and (d) NFT@Fe-442 at different current densities; (e) the variation in the specific capacitance of the NFT@Fe-xyz nanopaper samples at different current densities; (f) long-term cycling performance of the NFT@Fe-712 at a current density of 5 A g^{-1} (inset shows the GCD curves of the last 10 cycles).

Fig. S10. (a) SEM images, (b) elemental mapping of C, O, Fe, S, and (c) XRD of NFT@Fe-712 after long-term cycling

Sample	Solution resistance (R_s / Ω)	Charge transfer resistance (R _{ct} /Ω)	Warburg impedance (R _w /Ω)	Equivalent series Resistance (R _{es} /Ω)
NFT@Fe-802	2.875	7.105	7.143	17.123
NFT@Fe-712	1.828	3.862	4.133	9.823
NFT@Fe-622	1.558	3.068	2.019	6.645
NFT@Fe-532	1.703	1.775	2.380	5.858
NFT@Fe-442	1.486	1.407	1.391	4.284

Table S3. Equivalent series resistance of the NFT@Fe-xyz nanopaper samples

Reference

- 1. T. Qi, J. Jiang, H. Chen, H. Wan, L. Miao and L. Zhang, *Electrochim. Acta*, 2013, 114, 674-680.
- 2. X. Tang, R. Jia, T. Zhai and H. Xia, ACS Appl. Mater. Interfaces, 2015, 7, 27518-27525.
- 3. X. Zhu, D. Hou, H. Tao and M. Li, J. Alloys Compd., 2020, 821, 153580.
- J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao and Y. Liu, *Nanoscale*, 2011, 3, 5034-5040.
- L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang and P. Yang, *Electrochim. Acta*, 2016, **190**, 566-573.
- L. Xia, X. Li, X. Wu, L. Huang, Y. Liao, Y. Qing, Y. Wu and X. Lu, J. Mater. Chem. A, 2018, 6, 17378-17388.

- L. Xiao, H. Qi, K. Qu, C. Shi, Y. Cheng, Z. Sun, B. Yuan, Z. Huang, D. Pan and Z. Guo, Adv. Compos. Hybrid Mater., 2021, 4, 306-316.
- 8. V.-P. Vu, V.-D. Mai, D. C. T. Nguyen and S.-H. Lee, ACS Appl. Energy Mater., 2022, 5, 2211-2220.
- D.-C. Wang, H.-Y. Yu, Z. Ouyang, D. Qi, Y. Zhou, A. Ju, Z. Li and Y. Cao, *Nanoscale*, 2022, 14, 5163-5173.
- H. y. Liu, T. Xu, C. y. Cai, K. Liu, W. Liu, M. Zhang, H. s. Du, C. l. Si and K. Zhang, *Adv. Funct. Mater.*, 2022, **32**, 2113082.
- F. A. Denis, J. Mario Guimarães, C. G. S. Mayara, S. P. Paula, H. R. d. C. Thiago, C. D. Matheus,
 L. L. Rodrigo and F. R. O. Paulo, *J. Energy Storage*, 2022, **52**, 104848.
- 12. Z. Ding, Y. Tang and P. Zhu, Int. J. Biol. Macromol., 2022, 200, 574-582.