Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

1	Supplementary Information							
2								
3	UiO-66 metal-organic frameworks-derived ZrO ₂ /ZnO							
4	mesoporous material for high-efficiency detection towards							
5	NO2 at room temperature							
6	Jinhong Yang ^a , Haoran Peng ^a , Chong Lin ^a , Qingjiang Pan ^a , Lixue Qi ^a , Li Li ^{*ab} , and							
7	Keying Shi ^{*a}							
8	^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education,							
9	School of Chemistry and Material Science, Heilongjiang University, Harbin 150080,							
10	P.R. China							
11	^b College of Modern Agriculture and Ecological Environment, Heilongjiang University,							
12	Harbin 150080, P. R. China							
13	*Corresponding author							
14	Tel.: +86 451 86604920; +86 451 86609141							
15	Email: lili1993036@hlju.edu.cn, <u>shikeying2008@163.com</u>							
16								

Sensor material	Gas	Operating temperature	OperatingGasResponsetemperatureconcentration(s)		Response time	time time		Ref.
SnO ₂ -ZrO ₂	NO ₂	150°C	10 ppm	24.7 ¹	-	-	-	1
ZrO ₂ -Y ₂ O ₃ (8%)	H_2	150°C	1000 ppm	7.3 ^①	5 s	7 s	-	2
In ₂ O ₃ /ZrO ₂	C ₃ H ₆ O	260°C	100 ppm	60.38 ¹	1 s	38 s	10 ppm	3
SnO ₂ /ZrO ₂	TEA	190°C	20 ppm	4 ^①	1 s	1 s	-	4
NiO/ZnO	ethanol	260°C	100 ppm	61 ^①	-	-	-	5
Ag/ZnO	NH ₃	150°C	10 ppm	29.5 ¹	13 s	20 s	10 ppm	6
MXene/GO/CuO /ZnO	NH ₃	RT	200 ppm	96% [©]	-	-	4.1 ppm	7
ZnO/TiO ₂	NO_2	500°C	50 ppm	7.5 ¹	-	-	-	8
Al ₂ O ₃ /ZnO	acetylene	120°C	200 ppm	96.46% [®]	-	-	1 ppm	9
ZnO/rGO	NO ₂	RT	50 ppm	9.61 ^①	25	15	5 ppm	10
CuO/rGO	NO_2	RT	5 ppm	$400.8\%^{\ensuremath{^{2}}}$	6.8	55.1	50 ppb	11
Pd-SnO ₂ /rGO	NO_2	RT	100 ppm	7.92 ^①	56.9	22.1	37.8 ppb	12
CdS/CuO/rGO	CdS/CuO/rGO NO ₂ RT 10 ppm		10 ppm	7.25 ^①	45.6	14.2	50 ppb	13
ZnO/ZrO	NO	NO DT 100		40 35 [®]	15 c	42.2 s	50 pph	This
	1102	N1	Too bbin	70.55	1.5 5	74,4 3	20 hhn	work

Table S1 Comparison of gas-sensing performance of ZrO2, ZnO and other hybrid

materials to NO₂ gas with previous reports.

(1) $:S = R_a/R_g \text{ or } S = R_g/R_a$

21 (2) :S =
$$|R_a - R_g|/R_a \times 100\%$$
 or S = $|R_g - R_a|/R_a \times 100\%$

Fig. S4 FT-IR spectrum of UiO-66.

For the original UiO-66 sample, the strong characteristic peak at 3400⁻¹ comes 38 from the hydroxyl vibrations of the adsorbed H_2O molecules. The peak at 1654 cm⁻¹ is 39 attributed to the bending vibration of -OH, and the two characteristic peaks at 1575 and 40 1399 cm⁻¹ are the symmetric stretching vibration and the asymmetric stretching 41 vibration of the organic ligand O-C=O. The characteristic peak at 1507 cm⁻¹ is the 42 vibrational peak of C=C in the benzene ring, and at about 747 and 668 cm⁻¹ are the 43 vibrational peaks typical of C-H aromatic organic compounds. In addition, the 44 asymmetric stretching vibration peak of Zr-(OC) is at about 552 cm⁻¹.^{16, 17} 45

46

47

Fig. S6 Equivalent circuit model for interpreting EIS data.

Raw materials	$\mathbf{R}_{1}(\Omega)$	C ₁ (F)	$R_2(\Omega)$	C ₂ (F)
UZZ-2	8.367×10 ⁴	9.521×10 ⁻¹¹	1.874×10 ⁶	1.792×10 ⁻¹⁰
UZZ-1	2.062×10 ⁵	6.693×10 ⁻¹¹	1.101×10 ⁷	2.341×10 ⁻¹⁰
UZZ-3	2.436×10 ⁵	6.447×10 ⁻¹¹	9.455×10 ⁶	3.131×10 ⁻¹⁰
ZrO_2	2.436×10 ⁵	6.447×10 ⁻¹¹	9.454×10 ⁶	3.131×10 ⁻⁹

Table S2 Parameters obtained by fitting the experimental curve to the equivalent circuit.

Where R_1 is the resistance at the electrode/sample interface, C_1 is the associated capacitance. R2 is mainly derived from the conductivity of the sample itself, and C2 is the corresponding associated capacitive property of the material itself.

Fig. S7 N2 adsorption-desorption isotherms for pure samples of ZrO2 (inset shows the pore size distribution curve).

Sample	S_{set} (m ² g ⁻¹)	Pore Size (nm)	Pore Volume (cm ⁻³ g ⁻¹)
ZrO ₂	20.4676	9.5330	0.0429
UZZ-1	42.0633	4.4520	0.0606
UZZ-2	43.3205	5.8679	0.0801
UZZ-3	28.4719	6.2261	0.0511

Table S3 Sample BET surface area, average pore size and pore volume.

67 Fig. S8 Response curves of (a) UZZ-1; (b) UZZ-3; (c) ZrO_{2;} (d) ZnO sensors at room temperature for different

68 concentrations of NO₂.

Sampl	Sample		UZZ-2		UZZ-1		UZZ-3			ZrO ₂			ZnO		
NO ₂ (ppm)	S	Tres/s	Trec/s	S	Tres/s	Trec/s	S	Tres/s	Trec/s	S	Tres/s	Trec/s	S	Tres/s	Trec/s
100	40.35	1.40	42.20	24.84	4.80	77.50	18.25	6.40	89.40	10.57	7.20	98.00	6.99	5.30	59.20
50	37.39	2.30	38.50	17.31	5.50	70.80	11.07	6.80	60.60	7.96	8.10	95.10	5.02	6.20	56.80
30	34.39	3.20	36.30	14.16	6.90	67.20	8.21	7.50	54.20	5.62	9.20	48.30	4.17	7.40	38.00
10	27.97	4.70	32.80	11.31	7.60	51.30	6.34	7.80	43.50	4.04	10.20	32.40	3.99	8.50	36.40
5	22.14	6.10	29.60	7.20	8.20	39.80	3.86	9.50	28.80	3.49	15.20	30.20	3.43	9.20	28.50
3	17.63	7.30	28.30	6.79	10.40	36.40	3.05	10.60	23.50	3.12	16.10	21.30	2.92	10.20	25.00
1	13.14	10.80	22.40	2.49	11.60	15.00	2.20	13.20	21.20	2.01	23.30	15.40	2.53	10.80	23.60
0.5	9.19	11.90	20.00	2.24	13.40	11.40	1.56	15.40	19.30	1.24	24.80	5.80	2.12	11.20	21.40
0.3	7.01	12.80	17.00	2.11	15.20	7.60	1.35	17.50	6.20	1.14	25.50	3.60	1.90	15.40	18.10
0.1	4.59	13.00	13.80	1.47	17.30	3.30	1.13	19.20	4.30	1.09	25.80	3.20	1.73	16.20	13.40
0.05	2.69	14.70	8.50												

Table S4 Response, response time and recovery time of samples at different NO₂ concentrations at room temperature.

***S:Response T**_{res}: **Response time T**_{rec}: **Recovery time**

72 Fig. S9 The response curves of directly prepared ZrO₂ sensors towards different concentrations of NO₂ at room

- 73 temperature.

76 Table S5 Peak position and peak area ratio of XPS O1s for UZZ-2 and UZZ-2+NO₂

77	samples	(%).
	Sampres	(, , , , , , , , , , , , , , , , , , ,

Sample		UZZ-2		UZZ-2+NO ₂				
Peak	O_1	Ov	Oc	Oı	Ov	Oc		
Binding energy (eV)	530.7	531.5	532.7	530.8	531.7	532.8		
Peak area ratio (%)	41.2	33.2	25.6	22.7	30.1	47.2		

89 Fig. S12 (a-c) UV-vis absorption spectra of UZZ-2, ZrO₂ and ZnO; (d-f) Tauc plots of UZZ-2, ZrO₂ and ZnO. (The

90 energy value at the intersection of the tangent line and the horizontal axis is the band gap width).

91

99 **References**

- J. H. Bang, N. Lee, A. Mirzaei, M. S. Choi, H. Choi, H. Jeon, S. S. Kim and H. W. Kim, *Sens. Actuator B-Chem.*, 2020, **319**.
- A. Ferlazzo, C. Espro, D. lannazzo, K. Moulaee and G. Neri, *International Journal of Hydrogen Energy*, 2022, **47**, 9819-9828.
- G. Q. Feng, Y. H. Che, S. H. Wang, S. Q. Wang, J. Hu, J. K. Xiao, C. W. Song and L. L. Jiang,
 Sens. Actuator B-Chem., 2022, **367**.
- C. M. Lou, Z. S. Li, C. Yang, X. H. Liu, W. Zheng and J. Zhang, *Sens. Actuator B-Chem.*,
 2021, 333.
- 108 5. L. Zhu, W. Zeng, J. D. Yang and Y. Q. Li, *Materials Letters*, 2018, **230**, 297-299.
- R. S. Ganesh, M. Navaneethan, V. L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki,
 P. S. Patil and Y. Hayakawa, *Sens. Actuator B-Chem.*, 2018, **255**, 672-683.
- 111 7. Y. Seekaew, S. Kamlue and C. Wongchoosuk, *Acs Applied Nano Materials*, 2023, 6, 9008-112 9020.
- 113 8. S. H. Kwon, T. H. Kim, S. M. Kim, S. Oh and K. K. Kim, *Nanoscale*, 2021, **13**, 12177-12184.
- V. V. Kondalkar, L. T. Duy, H. Seo and K. Lee, *ACS Appl. Mater. Interfaces*, 2019, **11**, 25891 25900.
- 10. Z. Liu, L. Yu, F. Guo, S. Liu, L. Qi, M. Shan and X. Fan, *Applied Surface Science*, 2017, **423**,
 117 721-727.
- H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang and Y. Zheng,
 Sensors and Actuators B: Chemical, 2021, **337**.
- H. Bai, H. Guo, C. Feng, J. Wang, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang and Y. Zheng,
 Applied Surface Science, 2022, **575**.
- F. Guo, C. Feng, Z. Zhang, H. Wu, C. Zhang, X. Feng, S. Lin, C. Xu, B. Zhang and H. Bai,
 Sensors and Actuators B: Chemical, 2022, **364**.
- 124 14. D. W. Hu, X. J. Song, S. J. Wu, X. T. Yang, H. Zhang, X. Y. Chang and M. J. Jia, *Chinese Journal of Catalysis*, 2021, **42**, 356-366.
- 126 15. X. X. Peng, L. Ye, Y. C. Ding, L. C. Yi, C. Zhang and Z. H. Wen, *Applied Catalysis B-*127 *Environmental*, 2020, **260**.
- 128 16. C. Q. Chen, D. Z. Chen, S. S. Xie, H. Y. Quan, X. B. Luo and L. Guo, *ACS Appl. Mater.*129 *Interfaces*, 2017, 9, 41043-41054.
- 130 17. W. Xu, Z. H. Xu, W. X. Yao, L. H. Hu, K. Q. Ding, G. D. Wu, G. M. Xiao and L. J. Gao, *Applied Catalysis a-General*, 2023, 662.