Remarkable Thermoelectric Efficiency of Cubic Antiperovskites
\[\text{Rb}_3\text{X(Se & Te)I with Strong Anharmonicity} \]

Shuming Zeng,1,* Qian Shen,1 Lina Guo,1 Yinchang Zhao,2,† Hao Huang,3 Geng Li,4,5,‡ and Yusong Tu1,§

1College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
2Department of Physics, Yantai University, Yantai 264005, People’s Republic of China
3Advanced Copper Industry College, Jiangxi University of Science and Technology, Yingtan 335000, China
4School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China.
5National Supercomputer Center in Tianjin, Tianjin 300457, China.

(Dated: October 10, 2023)

* zengsm@yzu.edu.cn
† y.zhao@ytu.edu.cn
‡ ligeng@nscc-tj.cn
§ ystu@yzu.edu.cn
FIG. S1. The calculated electron conductivities σ, electronic thermal conductivity κ_e, Seebeck coefficient S, and power factor (PF), for n-type and p-type doping levels ranging from 1.0×10^{18} to 1.0×10^{21} cm$^{-3}$, at 300 K, 500 K and 800 K for Rb$_3$SeI.
FIG. S2. The calculated electron conductivities σ, electronic thermal conductivity κ_e, Seebeck coefficient S, and power factor (PF), for n-type and p-type doping levels ranging from 1.0×10^{18} to $1.0 \times 10^{21}\text{cm}^{-3}$, at 300 K, 500 K and 800 K for Rb$_3$TeI.

FIG. S3. The DOS values for various doping concentrations at 300 K.