Supplementary Information for

Solvent-Free Preparation of Imine Vitrimers: Leveraging Benzoxazine Crosslinking for Melt Processability and Tunable Mechanical Performance

Levi J. Hamernik^a, William Guzman^a, & Jeffrey S. Wiggins^{a*}

^a School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.

*Corresponding Author: Jeffrey.wiggins@usm.edu

<u>Contents</u>

Synthesis of Imine Benzoxazine (iBOX) Monomers:	6
Scheme S1. Reaction pathways of aldehyde BOX and amine to yield: (a) the imine condensation product, a (b) the ring-opening addition product	and 7
NMR Spectroscopy:	8
Figure S1. ¹ H NMR spectrum of HBA-BA benzoxazine monomer	8
Figure S2. ¹³ C NMR spectrum of HBA-BA benzoxazine monomer	8
Figure S3. COSY NMR spectrum of HBA-BA benzoxazine monomer	9
Figure S4. HSQC NMR spectrum of HBA-BA benzoxazine monomer	9
Figure S5. HMBC NMR spectrum of HBA-BA benzoxazine monomer	10
Figure S6. Stacked ¹ H NMR spectra of D230-iBOX prepared with different stoichiometric ratios	11
Figure S7. ¹ H NMR spectrum of D400-iBOX monomer	12
Figure S8. ¹ H NMR spectrum of D230-iBOX monomer	12
Figure S9. ¹ H NMR spectrum of BAEE-iBOX monomer.	13
Figure S10. ¹ H NMR spectrum of MXDA-iBOX monomer.	13
Differential Scanning Calorimetry:	14
Table S1. Summary of DSC results for HBA-BA and iBOX monomers	14
Figure S11. DSC thermogram of HBA-BA monomer (5 $^\circ$ C/min, N $_2$ atmosphere)	14
Figure S12. DSC thermogram of iBOX monomers (5 °C/min, N $_2$ atmosphere)	15
Figure S13. DSC thermogram of polymerized iBOX networks (5 $^\circ$ C/min, N $_2$ atmosphere)	15
Rheology:	16
Table S2. Summary of rheological properties of iBOX monomers	16
FTIR Spectroscopy:	16
Figure S14. FTIR spectra of p(iBOX) networks after polymerizing at 180 °C for 2 hours	16
Thermogravimetric Analysis:	17
Figure S15. TGA thermogram of benzoxazine monomers (10 $^\circ$ C/min, N $_2$ atmosphere)	17
Figure S16. TGA thermogram of polybenzoxazine networks (10 $^\circ$ C/min, N $_2$ atmosphere)	17
Table S3. Summary of TGA results in an N_2 atmosphere for BOX monomers and polymerized networks	18
Figure S17. TGA thermogram of benzoxazine monomers (10 °C/min, AIR atmosphere)	18
Figure S18. TGA thermogram of polybenzoxazine networks (10 °C/min, AIR atmosphere)	19
Table S4. Summary of TGA results in an air atmosphere for BOX monomers and polymerized networks	19
Figure S19. TGA-MS thermogram of p(BAEE-iBOX) network (10 °C/min, N $_2$ atmosphere)	20
Exchange Kinetics:	21
Figure S20. p(D400-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).	21

Figure S21. p(D230-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).	21
Figure S22. p(BAEE-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).	22
Figure S23. p(MXDA-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right)	22
Isothermal Creep-Recovery:	23
Figure S24. Creep recovery curves of p(iBOX) networks at 50 °C	23
Figure S25. Creep recovery curves of p(iBOX) networks at 150 °C	23
Table S5. Creep-recovery results for p(iBOX) networks conducted at 50 °C and 150°C	24
Thermal Reprocessing:	25
Figure S26. Images of thermal reprocessing process, showing ground p(iBOX) powder and reprocesse bars.	d tensile 25
Table S6. Summary of tensile properties for p(iBOX) networks through 3 cycles of reprocessing	25
Figure S27. Stress vs. strain curves for p(D400-iBOX) through 3 reprocessing cycles	26
Figure S28. Stress vs. strain curves for p(D230-iBOX) through 3 reprocessing cycles	26
Figure S29. Stress vs. strain curves for p(BAEE-iBOX) through 3 reprocessing cycles	27
Figure S30. Stress vs. strain curves for p(MXDA-iBOX) through 3 reprocessing cycles.	27
Figure S31. FTIR spectra of p(D400-iBOX) through 3 reprocessing cycles.	28
Figure S32. FTIR spectra of p(D230-iBOX) through 3 reprocessing cycles.	28
Figure S33. FTIR spectra of p(BAEE-iBOX) through 3 reprocessing cycles.	29
Figure S34. FTIR spectra of p(BAEE-iBOX) through 3 reprocessing cycles.	29
Self-Healing:	
Figure S35. Scratch healing of p(D400-iBOX) network after eating at 180 °C for various times	30
Figure S36. Scratch healing of p(D230-iBOX) network after eating at 180 °C for various times	30
Figure S37. Scratch healing of p(BAEE-iBOX) network after eating at 180 °C for various times	30
Figure S38. Scratch healing of p(MXDA-iBOX) network after eating at 180 °C for various times	31
Figure S39. Scratch width vs. time at 180 °C for all p(iBOX) networks	31
Solvent Stability & Chemical Degradation:	32
Figure S40. Mass change of p(iBOX) networks in various solvents at 25 °C for 7 days	32
Table S7. Summary of mass change of p(iBOX) networks after 7 days of solvent exposure 25 °C	32
Figure S41. Residual mass vs. time for p(iBOX) networks in 1M HCl/THF (1:1 v/v) at 50 °C	33

Synthesis of Imine Benzoxazine (iBOX) Monomers:

Synthesis of D400 linked imine benzoxazine (D400-iBOX)

HBA-BA (20.33 g, 80 mmol) was added to a 100 mL one-neck round bottom flask and heated to 100 °C. Upon melting of the HBA-BA BOX monomer, Jeffamine D400 (20.31 g, 44 mmol) was added dropwise under vigorous stirring and left to react for 1 h. The reaction was then poured into an aluminum weigh pan and was transferred to a preheated vacuum oven. The material was allowed to react and degas for an additional hour at 120 °C under vacuum. The material was removed and cooled to room temperature to yield D400-iBOX as a pale yellow, viscous liquid (quantitative yield, T_g = -16.80 °C). ¹H NMR (600 MHz, DMSO-*d*6) δ 8.18 – 8.12 (m, 2H, CH=N), 7.47 (d, *J* = 8.4 Hz, 2H, CH aromatic), 7.37 – 7.30 (m, 4H, CH aromatic), 7.34 – 7.32 (m, 4H, CH aromatic), 7.30 – 7.24 (m, 2H, CH aromatic), 6.80 (d, *J* = 8.2 Hz, 2H, CH aromatic), 4.89 (s, 4H, O-CH₂-N), 3.92 (s, 4H Ar-CH₂-N), 3.83 (s, 4H Ar-CH₂-N), 3.46 (m, 15H, O- CH₂-CH), 3.38 – 3.19 (m, 5H, CH₃- CH-N), 1.10– 0.89 (m, 32H, CH₃- CH).

Synthesis of BAEE linked imine benzoxazine (BAEE-iBOX)

HBA-BA (35.52 g, 140 mmol) was added to a 100 mL one-neck round bottom flask and heated to 100 °C. Upon melting of the HBA-BA BOX monomer, 1,2-bis(2-aminoethoxy) ethane (11.43 g, 77 mmol) was added dropwise under vigorous stirring and left to react for 1 h. The reaction was then poured into an aluminum weigh pan and was transferred to a preheated vacuum oven. The material was allowed to react and degas for an additional hour at 120 °C under vacuum. The material was removed and cooled to room temperature to yield BAEE-iBOX as a pale yellow, tacky amorphous solid (quantitative yield, T_g = 12.72 °C). ¹H NMR (600 MHz, DMSO-*d*6) δ 8.13 (s, 2H, CH=N), 7.56 – 7.41 (m, 2H, CH aromatic), 7.39 – 7.28 (m, 4H, CH aromatic), 7.34 – 7.26 (m, 6H, CH aromatic), 7.29 – 7.22 (m, 2H, CH aromatic), 6.78 (d, *J* = 9.0 Hz, 2H, CH aromatic), 4.89 (s, 4H, O-CH₂-N), 3.92 (s, 4H Ar-CH₂-N), 3.83 (s, 4H Ar-CH₂-N), 3.74 – 3.53 (m, 8H, O-CH₂-CH₂-N), 3.49 – 3.44 (m, 4H, O-CH₂-CH₂-O).

Synthesis of MXDA linked imine benzoxazine (MXDA-iBOX)

HBA-BA (37.97 g, 150 mmol) was added to a 100 mL one-neck round bottom flask and heated to 100 °C. Upon melting of the HBA-BA BOX monomer, m-xylylenediamine (11.22 g, 82 mmol) was added dropwise under vigorous stirring and left to react for 1 h. The reaction was then poured into an aluminum weigh pan and was transferred to a preheated vacuum oven. The material was allowed to react and degas for an additional hour at 120 °C under vacuum. The material was removed and cooled to room temperature to yield D400-iBOX as a pale yellow, amorphous glass (quantitative yield, $T_g = 40.07$ °C). ¹H NMR (600 MHz, DMSO- d_6) δ 8.34 (s, 2H, CH=N), 7.53 (dd, J = 8.4, 2.2 Hz, 2H, CH aromatic), 7.41 (s, 1H, CH aromatic), 7.37 – 7.31 (m, 4H, CH aromatic), 7.33 – 7.29 (m, 5H, CH aromatic), 7.29 – 7.21 (m, 4H, CH aromatic), 7.18 (dd, J = 7.4, 2.2 Hz, 2H, CH aromatic), 6.82 (d, J = 8.6 Hz, 2H, CH aromatic), 4.91 (s, 4H, O-CH₂-N), 4.67 (s, 4H, CH₂-N=C), 3.93 (s, 4H Ar-CH₂-N), 3.83 (s, 4H Ar-CH₂-N).

Scheme S1. Reaction pathways of aldehyde BOX and amine to yield: (a) the imine condensation product, and (b) the ring-opening addition product.

NMR Spectroscopy:

Figure S1. ¹H NMR spectrum of HBA-BA benzoxazine monomer.

Figure S2. ¹³C NMR spectrum of HBA-BA benzoxazine monomer.

Figure S3. COSY NMR spectrum of HBA-BA benzoxazine monomer.

Figure S4. HSQC NMR spectrum of HBA-BA benzoxazine monomer.

Figure S5. HMBC NMR spectrum of HBA-BA benzoxazine monomer.

Figure S6. Stacked ¹H NMR spectra of D230-iBOX prepared with different stoichiometric ratios of NH_2 to CHO (* indicates presence of ring opened species resulting from ring-opening addition of $-NH_2$ to oxazine).

Figure S7. ¹H NMR spectrum of D400-iBOX monomer.

Figure S8. ¹H NMR spectrum of D230-iBOX monomer.

Figure S9. ¹H NMR spectrum of BAEE-iBOX monomer.

Figure S10. ¹H NMR spectrum of MXDA-iBOX monomer.

Differential Scanning Calorimetry:

Sample	Т _g (°С)	Т _{р, ехо 1} (°С)	T _{p, exo 2} (°C)
HBA-BA	55.17 (T _m)	215.01	
D400-iBOX	-16.80	205.41	249.85
D230-iBOX	9.35	203.10	250.47
BAEE-iBOX	12.72	188.03	246.86
MXDA-iBOX	40.07	196.97	252.15

Table S1. Summary of DSC results for HBA-BA and iBOX monomers

Figure S11. DSC thermogram of HBA-BA monomer (5 °C/min, N₂ atmosphere).

Figure S12. DSC thermogram of iBOX monomers (5 °C/min, N₂ atmosphere).

Figure S13. DSC thermogram of polymerized iBOX networks (5 °C/min, N₂ atmosphere).

Rheology:

Sample	Viscosity at 50 °C (Pa⋅s)	Minimum viscosity (Pa⋅s)	Gelation temperature (°C) **
D400-iBOX	10.05	< 0.5*	174.4
D230-iBOX	313.6	< 0.5*	168.8
BAEE-iBOX	1130	< 0.5*	149.5
MXDA-iBOX	> 10 ⁵	3.67 (147 °C)	161.9

* Beyond detection limit of employed geometry/strain

** Determined by storage/loss modulus crossover

FTIR Spectroscopy:

Figure S14. FTIR spectra of p(iBOX) networks after polymerizing at 180 °C for 2 hours.

Thermogravimetric Analysis:

Figure S15. TGA thermogram of benzoxazine monomers (10 °C/min, N₂ atmosphere).

Figure S16. TGA thermogram of polybenzoxazine networks (10 °C/min, N₂ atmosphere).

Sample		T _{d, 5%} (°C)	T _{d, 10%} (°C)	Char yield @ 900 °C (%)
	Monomer	186.81	202.21	32.15
NDA-DA	Network	222.72	239.41	43.69
	Monomer	228.39	254.52	21.56
	Network	257.90	275.18	23.44
D230-iBOX	Monomer	232.18	253.32	24.96
	Network	250.84	259.06	29.83
BAEE-iBOX	Monomer	245.03	262.12	33.95
	Network	258.54	267.40	35.99
MXDA-iBOX	Monomer	261.68	273.82	44.13
	Network	262.46	282.47	48.25

Table S3. Summary of TGA results in an N₂ atmosphere for BOX monomers and polymerized networks

Figure S17. TGA thermogram of benzoxazine monomers (10 °C/min, AIR atmosphere).

Figure S18. TGA thermogram of polybenzoxazine networks (10 °C/min, AIR atmosphere).

Sample		T _{d, 5%} (°C)	T _{d, 10%} (°C)
	Monomer	182.06	197.34
NDA-DA	Network	220.71	236.59
	Monomer	229.60	253.06
D400-IBOX	Network	252.50	267.47
	Monomer	216.70	242.31
D230-IBOX	Network	254.03	261.98
	Monomer	246.69	268.62
DAEE-IDOX	Network	256.84	266.42
MXDA-iBOX	Monomer	262.14	273.36
	Network	265.14	282.79

Table S4. Summary of TGA results in an air atmosphere for BOX monomers and polymerized networks

Figure S19. TGA-MS thermogram of p(BAEE-iBOX) network (10 °C/min, N₂ atmosphere). Molecular atomic mass units (amu) of evolved degradation products are shown, confirming initial degradation at the tertiary amine Mannich bridge in the network backbone resulting in volatilization of fragments of the benzylamine pendant.

Exchange Kinetics:

Figure S20. p(D400-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).

Figure S21. p(D230-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).

Figure S22. p(BAEE-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).

Figure S23. p(MXDA-iBOX) stress relaxation curves (left) and resulting Arrhenius plot (right).

Isothermal Creep-Recovery:

Figure S24. Creep recovery curves of p(iBOX) networks at 50 °C.

Figure S25. Creep recovery curves of p(iBOX) networks at 150 °C.

	50 °C, 1.0 MPa		150 °C, 0.1 MPa	
Vitrimer Network	Maximum strain (%)	Recovery (%)	Maximum strain (%)	Recovery (%)
p(D400-iBOX)	23.7	82.2	67.6	9.8
p(D230-iBOX)	0.09	89.3	26.7	18.3
p(BAEE-iBOX)	0.07	98.8	5.9	28.7
p(MXDA-iBOX)	0.03	99.8	0.22	85.3

Table S5. Creep-recovery results for p(iBOX) networks conducted at 50 °C and 150°C

Thermal Reprocessing:

Powderized network loaded into tensile dogbone mold

.

Tensile bars after melt pressing

Tensile bars after demolding

Figure S26. Images of thermal reprocessing process, showing ground p(iBOX) powder and reprocessed tensile bars.

San	nple	Modulus (MPa)	Peak stress (MPa)	Strain at break (%)	Toughness (10 ⁶ J/m³)
	Virgin	19.08 ± 3.65	9.70 ± 0.38	265 ± 14	15.6 ± 1.2
	Reprocessed 1	21.07 ± 2.98	13.79 ± 1.07	365 ± 25	28.4 ± 3.7
ρ(D400-iBOX)	Reprocessed 2	27.88 ± 2.87	13.21 ± 0.94	319 ± 30	24.1 ± 3.0
	Reprocessed 3	25.17 ± 3.07	13.12 ± 0.49	256 ± 7	20.5 ± 0.9
	Virgin	806.3 ± 21.4	70.1 ± 0.5	15.3 ± 0.6	7.1 ± 0.3
	Reprocessed 1	719.9 ± 26.0	53.9 ± 5.6	9.5 ± 1.3	2.9 ± 0.8
ρ(D230-iBOX)	Reprocessed 2	783.1 ± 19.1	45.4 ± 1.5	6.6 ± 0.2	1.6 ± 0.1
	Reprocessed 3	820.7 ± 13.2	38.2 ± 5.6	5.2 ± 0.9	1.1 ± 0.4
	Virgin	883.7 ± 26.9	79.5 ± 2.1	11.9 ± 0.5	5.6 ± 0.4
	Reprocessed 1	874.1 ± 29.9	56.3 ± 8.7	9.1 ± 1.5	3.1 ± 0.9
p(BAEE-IBOX)	Reprocessed 2	922.6 ± 10.2	52.7 ± 4.9	8.2 ± 1.1	2.4 ± 0.6
	Reprocessed 3	896.2 ± 26.5	54.2 ± 2.1	8.5 ± 0.5	2.4 ± 0.2
p(MXDA-iBOX)	Virgin	989.2 ± 33.0	70.3 ± 2.8	8.4 ± 0.5	3.3 ± 0.3
	Reprocessed 1	926.0 ± 28.8	49.3 ± 4.1	6.0 ± 0.9	1.5 ± 0.4
	Reprocessed 2	1014 ± 17	27.2 ± 4.2	3.0 ± 0.6	0.4 ± 0.2
	Reprocessed 3	1034 ± 36	19.9 ± 4.7	2.2 ± 0.7	0.3 ± 0.1

Table S6. Summary of tensile properties for p(iBOX) networks through 3 cycles of reprocessing

Figure S27. Stress vs. strain curves for p(D400-iBOX) through 3 reprocessing cycles.

Figure S28. Stress vs. strain curves for p(D230-iBOX) through 3 reprocessing cycles.

Figure S29. Stress vs. strain curves for p(BAEE-iBOX) through 3 reprocessing cycles.

Figure S30. Stress vs. strain curves for p(MXDA-iBOX) through 3 reprocessing cycles.

Figure S31. FTIR spectra of p(D400-iBOX) through 3 reprocessing cycles.

Figure S32. FTIR spectra of p(D230-iBOX) through 3 reprocessing cycles.

Figure S33. FTIR spectra of p(BAEE-iBOX) through 3 reprocessing cycles.

Figure S34. FTIR spectra of p(BAEE-iBOX) through 3 reprocessing cycles.

Self-Healing:

Figure S35. Scratch healing of p(D400-iBOX) network after eating at 180 °C for various times.

Figure S36. Scratch healing of p(D230-iBOX) network after eating at 180 °C for various times.

Figure S37. Scratch healing of p(BAEE-iBOX) network after eating at 180 °C for various times.

Figure S38. Scratch healing of p(MXDA-iBOX) network after eating at 180 °C for various times.

Figure S39. Scratch width vs. time at 180 °C for all p(iBOX) networks.

Solvent Stability & Chemical Degradation:

Figure S40. Mass change of p(iBOX) networks in various solvents at 25 °C for 7 days.

Solvent	Network			
Solvent	p(D400-iBOX) p(D230-iBOX)		p(BAEE-iBOX)	p(MXDA-iBOX)
H ₂ O	106.1 ± 0.4	101.8 ± 0.6	101.3 ± 0.6	100.1 ± 0.2
1M NaOH	203.4 ± 14.9	100.7 ± 0.4	100.9 ± 0.6	99.8 ± 0.3
MeOH	175.2 ± 17.5	134.7 ± 0.9	113.3 ± 0.6	100.4 ± 1.0
EtOH	196.3 ± 28.5	177.5 ± 17.4	99.7 ± 0.3	100.7 ± 0.13
Acetone	131.2 ± 6.7	135.1 ± 2.5	100.9 ± 0.1	100.6 ± 0.7
Toluene	302.5 ± 12.9	258.8 ± 21.1	98.6 ± 0.1	100.2 ± 0.3
DMF	267.0 ± 23.3	234.4 ± 12.0	101.9 ± 1.9	100.1 ± 0.3
THF	61.6 ± 2.3	78.9 ± 9.8	103.4 ± 4.9	98.6 ± 0.1
CHCl ₃	55.6 ± 5.0	82.8 ± 6.9	92.6 ± 2.7	100.4 ± 0.2

Table S7. Summary of mass change of p(iBOX) networks after 7 days of solvent exposure 25 °C

Figure S41. Residual mass vs. time for p(iBOX) networks in 1M HCI/THF (1:1 v/v) at 50 °C.