Supporting Information

Revealing the role of aniline in assisting SnO₂ electrocatalytic CO₂ reduction to HCOOH: via the perspective of reaction pathway

Yuning Zhang, ^{ab} Hao Jiang, ^{ac} Kangpeng Wang, ^b Dongfang Niu, ^{a*} and Xinsheng Zhang ^{a*}

^a State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

^b State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 200237, China

^c Petroleum Processing Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

*Corresponding author: dfniu@ecust.edu.cn (D. Niu); xszhang@ecust.eud.cn (X. Zhang)

Fig. S1. Pictures of (a) H-type cell and (b) flow cell with an observable gas diffusion electrode.

Fig. S2. (a) XPS survey spectra of SnO₂/OCNTs, SnO₂/PDA_{0.25}-OCNTs, SnO₂/PDA_{0.5}-OCNTs, SnO₂/PDA_{0.75}-OCNTs, and SnO₂/PDA₁-OCNTs. (b) Weight loss curves of SnO₂/OCNTs, SnO₂/PDA_{0.25}-OCNTs, SnO₂/PDA_{0.5}-OCNTs, SnO₂/PDA_{0.75}-OCNTs, and SnO₂/PDA₁-OCNTs.

Fig. S3. TEM images of (a) OCNTs, (b) PDA_{0.25}-OCNTs, (c) PDA_{0.5}-OCNTs, (d) PDA_{0.75}-OCNTs, and (e) PDA₁-OCNTs. HR-TEM images of (a) OCNTs, (b) PDA_{0.5}-OCNTs, (c) PDA₁-OCNTs.

Fig. S4. (a) LSV curves obtained in 0.1 M KHCO₃ electrolytes saturated with N_2 , (b) Faradaic efficiencies of H_2 , (c) partial current densities of H_2 , (d) Faradaic efficiencies of CO, (e) partial current densities of CO, and (f) current densities of total C1 products over as-prepared catalysts at different applied potentials.

Fig. S5. (a) N 1s XPS spectrum of t-PDA_{0.5}-OCNTs. (b) Current densities and (c) Faradaic efficiencies of PDA_{0.5}-OCNTs and t-PDA_{0.5}-OCNTs at different applied potentials.

Fig. S6. (a) Stability tests of $SnO_2/OCNTs$ at -1.29 V. TEM images of (b) $SnO_2/PDA_{0.5}$ -OCNTs and (c) $SnO_2/OCNTs$ after stability tests.

Fig. S7. *In-situ* FT-IR spectra of SnO₂/OCNTs at different applied potentials.

Fig. S8. Current densities over (a) $SnO_2/PDA_{0.5}$ -OCNTs and (b) $SnO_2/OCNTs$ at different applied potentials. (c) Stability tests over $SnO_2/PDA_{0.5}$ -OCNTs at -1.83 V in the flow cell with 1 M KHCO₃.

Samples	N content (at.%)		
SnO ₂ /OCNTs	/		
SnO ₂ /PDA _{0.25} -OCNTs	2.62		
SnO ₂ /PDA _{0.5} -OCNTs	3.49		
SnO ₂ /PDA _{0.75} -OCNTs	3.93		
SnO ₂ /PDA ₁ -OCNTs	6.64		

Table. S1. The contents of N elements of as-prepared catalysts by XPS

Table. S2. Contents of elements in the carriers

C content	
-	

Catalysts	Electrolytes	Potential at FE _{max}	FE _{HCOOH}	<i>ј</i> нсоон	Stability	
		(V vs. RHE)	(%)	(mA cm ⁻²)	(h)	Ref.
SnO ₂ /PDA _{0.5} -CNTO	0.1 M KHCO ₃	-1.29	89	-32	36	This work
SnO ₂ /PDA _{0.5} -CNTO	1 M KHCO ₃	-1.83	95	-166	12	This work
Vo-rich SnO ₂	0.5 M KHCO ₃	-1.1	~ 60	-40	30	[54]
SnO ₂ @N-CNW	0.5 M NaHCO ₃	-0.8	90	-13.5	20	[55]
NW-SnO ₂	0.5 M KHCO ₃	-1.0	87.4	-22	18	[56]
SnO ₂ ⊃NC@EEG	0.1 M KHCO ₃	-1.2	81.2	-11	10	[57]
Sn/CN-0.1	0.1 M KHCO ₃	-0.9	96	-3.42	10	[58]
SnO ₂ nanosheet	0.1 M KHCO ₃	-1.01	85	-12.75	/	[59]
mSnO ₂ NTs-350	0.5 M KHCO ₃	-1.3	90	-9	12	[60]
VO-rich N-SnO ₂ NS	0.1 M KHCO ₃	-0.9	83	~ -6.7	10	[61]
SnO ₂ -CNT pH-11	0.5 M KHCO ₃	-0.77	76	~ -3.5	10	[62]
VO-SnO _x /CF-40	0.1 M KHCO ₃	-1.0	86	-30	8	[63]
CNT#SnO ₂ NDs	0.1 M KHCO ₃	-0.9	70	-5.3	24	[64]
SnO ₂ /OC	0.1 M KHCO ₃	-1.0	75	-15	8	[65]
NRS-SnO	1 M KOH	-0.7	87	-330	/	[66]

Table. S3. Summary of the reported CO_2ER performance over SnO_2 -based electrocatalysts