Advance in modulation engineering of ferroelectrics and multiferroics with non-chemical agents and factors: a review

Xinqiu Deng^{†ab}, Yuying Wu^{†ab*}, Zhangran Gao^{†c}, Gang Zhou^{d*}

^aSchool of Electrical Engineering, Shanghai DianJi University, Shanghai, 201306, People's Republic of China

^bCollege of Materials, Shanghai Dianji University, Shanghai, 201306, People's Republic of China

^cSchool of Science, QingDao University of Technology, QingDao, 266520, People's Republic of China

^dKey Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China

† These authors contributed equally

Table 1 The summary of engineering effects for the ferroelectrics and multiferroics.

Ferroelectrics/ Multiferroics	Modualting strategies	Effcts		
CuInP ₂ S ₆	pressure	increasing polarization below 0.26 GPa		
Hg ₃ Te ₂ Cl ₂	pressure	phase transition		
Lu _{0.5} Sc _{0.5} FeO ₃	pressure	enhancing polarization and T_N		
Bi ₅ Ti ₃ FeO ₁₅	force	switching ferroelectric and magnetic domains		
[(CH ₃) ₂ NH ₂]C ₀ (HCOO) ₃	pressure	phase transition		
[(CH ₃) ₂ NH ₂]Mn(HCOO) ₃	pressure	phase transition		
0.66Bi _{0.90} Dy _{0.10} FeO ₃ - 0.34PbTiO ₃ (34PTDy10)	stress	magnetoelectric coupling		
Ni _{0.5} Fe ₂ O ₄ /BaTiO ₃	stress	magnetoelectric coupling		
PbTiO ₃	negative pressure	increasing spontaneous polarization		
(EuTiO ₃) _{0.5} :(MgO) _{0.5}	negative pressure	magnetoelectric coupling		
Sn ₂ P ₂ S ₆	light irradiation (wavelength 532 nm 0.71, 1.42, 7.1 W/cm²)	enhancing domain wall conductivity		
PbTiO ₃	light irradiation (laser: wavelength from 365 nm to 905 nm)	eliminating polar bubble domains		
BaTiO ₃	light irradiation (laser wavelength 405 nm, 12.2 W/cm ²)	switching ferroelectric domains		
BiFe _{0.8} Co _{0.2} O ₃	light irradiation (laser wavelength 405 nm, 95 mW/cm²)	magneto-electric-optical coupling		
SA-PFA	light irradiation (wavelength: 365 nm, 488 nm)	structural transformation, switching ferroelectric domain		
tBu-2-FSA	light irradiation (wavelength: 365 nm, 488 nm)	structural transformation, switching ferroelectric domain		
CH ₃ NH ₃ PbI ₃	light irradiation (wavelength: 450 nm, power: 0.5 mW)	switching ferroelectric domain		
Ni(DPA) ₂	UV light irradiation (wavelength: 365 nm, 405 nm)	tuning polarization		
Ni/BaTiO3	visible light illumination (wavelength: 532 nm, power: 10 mW)	cooperative ferroelectric and ferromagnetic domain walls motion		

(References corresponding to the main text.)