Supplementary Information

Topology Driven and Soft Phonon Mode Enabled Na-ion Diffusion in Quaternary Chalcogenides, Na₃ZnGaX₄ (X=S, and Se)

Sajan Kumar^{1,2}, Mayanak K. Gupta^{1,2\$}, Ranjan Mittal^{1,2*}, Santhoshkumar Sundaramoorthy³, Amitava. Choudhury^{3#}, Naresh C. Osti⁴, Alexander I. Kolesnikov⁴, Matthew B. Stone⁴, Yongqiang Cheng⁴, and Samrath L. Chaplot^{1,2}

Email: ^{\$}mayankg@barc.gov.in, *rmittal@barc.gov.in, [#]choudhurya@mst.edu

¹Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
 ²Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
 ³Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
 ⁴Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Sample Preparation

Na₃ZnGaS₄ was synthesized through high temperature solid-state reaction taking stoichiometric ratio of elements by combining 1.5 mM of Na₂S, 1 mM of Zn, 1 mM of Ga and 2.5 mM of S in a carbon coated quartz ampoule. For the synthesis of selenide analogue (Na₃ZnGaSe₄), we followed flux route synthesis involving 3 mM of Na₂Se₂, 1 mM of Zn, 1 mM of Ga and 2.5 mM of Se taken in a quartz ampoule. Na₂Se₂ was synthesized through stoichiometric reaction between Na and Se in liquid ammonia and all other precursors were purchased from Alfa Aesar. The reactants were carefully loaded into the ampoules inside argon-filled glove box ($O_2 < 0.5$ ppm, $H_2O < 0.5$ ppm). The loaded ampoules were connected to an adapter to avoid any exposure to air while transferring out from the glove box and subsequently heat sealed under vacuum. The sealed ampoules were placed in a temperature-controlled furnaces and temperature was ramped up at a rate of 20 °C/h up to 750 °C and dwelled at that temperature for 120 hours followed by cooling down to room temperature at a rate of 35 °C/h. The Na₃ZnGaS₄ ampoules were then taken inside glovebox and samples were recovered. The flux synthesized Na₃ZnGaSe₄ was washed with N, N dimethylformamide (DMF) to remove the excess flux before transferring into the glove box. Note that several batches of ampoules were heated to generate ~5 grams of materials for neutron scattering experiments. The phase purity of the samples was evaluated by one-to-one comparison of experimental and simulated powder X-ray diffraction patterns of Na_3ZnGaX_4 (X = S, Se) (see Figure S1).

Powder X-ray Diffraction

Laboratory powder X-ray diffraction data were collected from a PANalytical X'Pert Pro diffractometer equipped with a Cu K α anode and a linear array PIXcel detector over a 2 θ range of 5–90° with an average scan speed of 0.0472° S⁻¹. The samples were hand ground into fine powder inside glovebox and transferred into airtight cells with the Kapton film to collect the data.

Simulation Details of thermodynamical and transport properties

The velocity auto-correlation function of i^{th} atomic species $Z_i(t)$, which reveals the underlying nature of the dynamical processes, has been calculated using velocity trajectory $\vec{v}_i(t)^{-1}$

$$Z_{i}(t) = \frac{\langle \vec{v}_{i}(0).\vec{v}_{i}(t) \rangle}{\langle \vec{v}_{i}(0).\vec{v}_{i}(0) \rangle}$$
(S1)

We have calculated the partial phonon density of states (PDOS) $g_k(\omega)$ of kth species via the Fourier transform of velocity auto-correlation function $Z_k(t)^{1,2}$:

$$g_k(E) = \frac{1}{\hbar\sqrt{2\pi}} \int Z_k(t) e^{iEt/\hbar} dt \qquad (S2a)$$

The total PDOS g(E) can be obtained as

$$g(E) = \sum_{k} g_k(E).$$
 (S2b)

The neutron-weighted PDOS $g^n(E)$ can be obtained as

$$g^{n}(E) = \sum_{k} \frac{\sigma_{k}}{M_{k}} g_{k}(E).$$
(S2c)

Using the partial PDOS, we have computed the multiphonon contribution, which was further used to apply a multiphonon correction to the measured INS data. In the one-phonon neutron scattering approach and assuming the incoherent approximation, the relation between S(Q,E) and the partial phonon density of states $g_k(E)$ can be expressed as

$$S(Q, E) = B \frac{Q^2 \{n(E,T)+1\}}{E} \sum_k \frac{\sigma_k}{M_k} e^{-2W_k(Q,T)} g_k(E)$$
(S3)

where *B* is normalisation factor, σ_k , M_k , and $2W_k(Q,T)$ are the total neutron scattering cross-section, mass and Debye-Waller factor for atom *k*. The one-phonon and also multiphonon (up to 10 phonons) S(Q,E)spectra were calculated using the partial PDOS (obtained from time trajectories from the AIMD simulations), and finally the spectra were convoluted with the SEQUOIA resolution function for the incident energies used during the measurement using OCLIMAX (for details see refs^{3,4}). The properly normalised calculated multiphonon spectra were subtracted from the experimental data, which then were transferred to $g^n(E)$ by using equation (1) such that the results can be considered as the experimental neutron-weighted one-phonon density of states. To investigate the local structure and cation ordering, the pair distribution function, $g_{ij}(r)$, among various atoms, has been calculated using the following relation^{5, 6},

$$g_{ij}(r) = \frac{1}{4\pi r^2 N_i N_j} \sum_{\substack{i'j'\\ii'\neq jj'}} \langle \delta(r - \left| \vec{r}_{ij}^{\ i'j'}(t) \right| \rangle$$
(S4)

Where N_i and N_j are the total numbers of atoms of i^{th} and j^{th} species, $\vec{r}_{ij}^{\ i'j'}(t)$ is the relative position between i^{th} number of atoms of i^{th} type and j^{th} number of atoms of j^{th} species at time t, and $\langle ... \rangle$ is the ensemble average.

We have also computed the mean square displacement (MSD), $\langle u_i^2(t) \rangle$ from atomic trajectory using the following equation⁷

$$\langle u_i^2(t) \rangle = \frac{1}{N_i} \sum_{j=1}^{N_i} \langle |\vec{r}_i^j(t) - \vec{r}_i^j(0)|^2 \rangle$$
(S5)

where N_i is the total number of *i* type species and $\vec{r}_i^{j}(t)$ is the position coordinate of j^{th} atom of i^{th} type species. Using the slope of the linear region of MSD vs. t(ps) plot, the diffusion coefficient has been estimated using Einstein's relation,

$$D = \frac{\Delta \langle u_i^2 \rangle}{6\Delta t} \quad . \tag{S6}$$

The self-Van-Hove correlation function, $G_s(r, t)$, which carries information on the evolution of atoms with time and space, has been computed using the following relation^{8, 9},

$$G_s(r,t) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(r - (r_i(0) - r_i(t))\right)$$
(S7)

The total dynamical structure factor $S_{\text{total}}(Q, E)$ for diffusive cations, where the majority of the scattering is dominated by incoherent scattering, was calculated using the following relation^{10, 11},

$$S_{total}(Q, E) = \sum (b_{coh}^{i} b_{coh}^{j}) S_{coh}^{ij}(Q, E) + \sum_{i} (b_{inc}^{i})^{2} S_{inc}^{i}(Q, E)$$
(S8)

where, b_{coh}^{i} and b_{inc}^{i} be the coherent and incoherent scattering length of ith type of atoms and $S_{coh}^{ij}(Q, E)$ represents coherent dynamical structure factor.

TABLE S1: The close interatomic contacts for Na atoms at 32*g* and 16*f* sites in Na₃ZnGaX₄ (X=S, Se) are tabulated below. The room temperature lattice parameters of Na₃ZnGaX₄ (X=S/Se) are a = b = 12.925 /13.43 Å and c = 18.623/19.15 Å. For S compound, the close Na-Na contacts formed by 32*g*-32*g* sites are 3.17 Å and 4.07 Å in the a-b plane while a close contact of 4.17 Å is along the c-axis. The corresponding close Na-Na distances for Se compound are 3.36 Å and 4.17 Å in the a-b plane while a close contact of 4.59 Å can be found along the c-axis.

Na₃ZnGaS₄		Na ₃ ZnGaSe ₄	
Interatomic distances (Å)	Na-Na	Interatomic distances (Å)	Na-Na
3.17	32g-32g	3.36	32g-32g
3.81	32g-16f	3.93	32g-16f
3.85	32g-16f	4.03	32g-16f
4.07	32 <i>g</i> -32 <i>g</i>	4.17	32g-32g
4.12	32g-16f	4.38	32 <i>g</i> -16 <i>f</i>
4.25	16 <i>f</i> -16 <i>f</i>	4.47	16 <i>f</i> -16 <i>f</i>
4.17	32g-32g	4.59	32g-32g

Figure S1. The experimental Powder X-ray diffraction patterns of Na₃ZnGaX₄ (X=S, Se) showing good matching with the simulated powder patterns generated from single-crystal atomic coordinates. The X-ray wavelength was 1.5418 Å.

Figure S2 (b). The calculated phonon density of states in $Na_3ZnGaSe_4$ with 2% Na vacancy at various temperature using AIMD.

Figure S3. (a)The measured PDOS spectra for Na_3ZnGaX_4 (X=S, Se) at 100 K with an incident neutron energy of 82.9 meV. (b-c) The measured QENS spectra are fitted with one Lorentzian and delta function for both the chalcogenide compounds Na_3ZnGaX_4 (X=S, Se) at 700 K.

Figure S3 (d) Analysis of the QENS data of Na_3ZnGaX_4 (X=S, Se) compounds using at 700 K, using C-E model (red solid line). (Upper Panel) With constraining the jump-length (*d*) obtained from AIMD simulation as a parameter and (Lower Panel) without constraining the jump length.

Figure S3 (e). The relative spectral weight of the quasielastic area ($A_{Lorentzian}$) with respect to elastic component ($A_{Elastic}$) as a function of Q in both chalcogenide compounds (Na_3ZnGaS_4 , and Na_3ZnGaS_4) at 700 K.

Figure S4. The calculated S(Q, E) of Na-ion in the 2% Na-deficit structure of Na₃ZnGaS₄ at 900 K using AIMD.

Figure S5. The calculated S(Q, E) of Na-ion in the 2% Na-deficit structure of Na₃ZnGaSe₄ at 900 K using AIMD.

Figure S6. (a) The calculated MSD in stoichiometric Na₃ZnGaS₄ at two temperatures using AIMD. (b) The calculated MSD in stoichiometric Na₃ZnGaSe₄ at two temperatures using AIMD.

Figure S7. (a) The calculated MSD in the 2% Na-deficit structure of Na₃ZnGaS₄ at various temperatures using AIMD. (b) The calculated MSD in the 2% Na-deficit structure of Na₃ZnGaSe₄ at various temperatures using AIMD.

Figure S8. The calculated squared displacements (u^2) of individual Na atoms at 32*g* and 16*f* Wyckoff sites at 900 K in Na₃ZnGaX₄ (X=S, Se).

Figure S9. (a, b) The calculated Na-occupation probability with isosurface value ~ $0.001/\text{Å}^3$ in the 2% Na-deficit structure of Na₃ZnGaX₄ (X=S, Se) at 900 K using AIMD. The 32g (Na2) Wyckoff sites Na atoms are shown by black solid sphere and 16f (Na1) Wyckoff sites Na atoms shown by red sphere. (c, d) The calculated atomic trajectory in the 2% Na-deficit structure of Na₃ZnGaX₄ (X=S, Se) compounds for 60 ps with 120 fs intervals at 900 K using AIMD and (e, f) and also in stoichiometric Na₃ZnGaX₄ (X=S, Se) compounds for 20 ps with 40 fs intervals at 700 K. We have shown only half of the unit cell boundary along the a-axis for clarity. (c-f) The Na atoms are shown by black spheres. The ZnX₄ and GaX₄ polyhedral units are shown by green and blue colors, respectively. The Na time-dependent trajectory is shown by small red spheres.

Figure S10. The calculated self Van-Hove correlation function in *vac*-NZGS and *vac*-NZGSe for 50 ps with 10 ps time intervals at 900 K using AIMD.

Figure S11 (a). The calculated pair distribution function in the 2% Na-vacancy structure of Na₃ZnGaS₄ at various temperatures using AIMD.

Figure S11 (b). The calculated pair distribution function in the 2% Na vacancy structure of Na₃ZnGaSe₄ at various temperatures using AIMD.

- 1. J. Li and J. Tomkinson, in *Theoretical and Computational Chemistry*, eds. P. B. Balbuena and J. M. Seminario, Elsevier, 1999, vol. 7, pp. 471-532.
- 2. C. Lee, D. Vanderbilt, K. Laasonen, R. Car and M. Parrinello, *Physical Review B*, 1993, 47, 4863-4872.
- 3. Y. Q. Cheng, L. L. Daemen, A. I. Kolesnikov and A. J. Ramirez-Cuesta, *Journal of Chemical Theory and Computation*, 2019, 15, 1974-1982.
- 4. Y. Q. Cheng and A. J. Ramirez-Cuesta, *Journal of Chemical Theory and Computation*, 2020, 16, 5212-5217.
- 5. R. J. Temkin, Journal of Non-Crystalline Solids, 1975, 17, 215-230.
- 6. X. Wang, S. Tan, X.-Q. Yang and E. Hu, *Chinese Physics B*, 2020, 29, 028802.
- 7. M. P. Allen and D. J. Tildesley, *Journal*, 2017, DOI: 10.1093/oso/9780198803195.001.0001.
- 8. U. Dahlborg, W. Gudowski and M. Davidovic, *Journal of Physics: Condensed Matter*, 1989, 1, 6173.
- S. Kumar, M. K. Gupta, R. Mittal, N. H. Jalarvo, S. Mukhopadhyay, R. Shukla, S. N. Achary, A. I. Kolesnikov, A. K. Tyagi and S. L. Chaplot, *ACS Applied Energy Materials*, 2022, DOI: 10.1021/acsaem.2c02663.
- 10. M. Bee, *Quasielastic neutron scattering*, Adam Hilger, United Kingdom, 1988.
- 11. K. Sturm, Zeitschrift Naturforschung Teil A, 1993, 48, 233-242.