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1 Methodology

First-principles density functional theory (DFT) based calculations were performed by
the Vienna ab Initio Simulation Package (VASP) [1]. The exchange-correlation poten-
tial was treated within the generalized gradient approximation (GGA) with the PBEsol
parametrization [2]. The projected augmented wave (PAW) method [3], with a kinetic
energy cutoff for the plane-wave expansion of 910 eV was used to solve the Kohn-Sham
equations. The (001) surface was cleaved from an optimized bulk orthorhombic phase
which is the most stable MAPbI3 perovskite configuration, and the a and b lattice param-
eters were fixed to those optimized values. The surface considered on this study contains
three layers of octahedra which is enough to reproduce experimental properties of the sur-
face of the 3D system [4]. Passivation is performed at both sides of the surface to avoid
the creation of dipole moment across the structure. The optimization of atomic positions
was performed using a conjugate gradient algorithm until the Hellmann-Feynman forces
reached a threshold of 1× 10−4 eV/Å. A vacuum of at least 10Å was employed to avoid
undesired interactions between periodic layers. The Brillouin zone was sampled with a
6×6×1 k-point mesh. To calculate binding energies, the isolated molecule was optimized

1

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2023



in a 20× 20× 20Å3 cell. Dipole calculations of the ionized molecules were calculated by
solving the restricted Kohn-Sham equations with the Psi4 code [5] and using B3LYP [6]
and the aug-cc-pVTZ basis.

2 Charge Density Difference

To further analyse the molecule-surface bonding mechanism, we calculated the charge
density difference (∆ρ) between the passivated perovskite surface and the sum of isolated
surface and molecules sub-systems as:

∆ρ = ρT − (ρS + ρT
A)

where ρT, ρS and ρT
A represent the total charge density and of the unpassivated surface

and total organic passivator subsystems respectively. Figures 1(a)-(c) present ∆ρ for the
calculated structures. It shows charge redistribution only located at the molecule-surface
bonding region for most of the structures. Furthermore, there is electron loss (yellow
surface) on the ammonium group mainly at the most inserted H atom and electronic
re-accommodation on the N atom. It is also observed electron loss on the axial external I
atoms. Besides, the main gain is observed along the Ammonium H - I bonds (l < 2.74Å)
as indicated by the blue lobes located in between these atoms and being distributed in
the perpendicular direction to the bond.Additional charge redistribution is observed in
phenyl with m = 0 and m = 1 on the ring C atoms due to the interaction of it with the
surface.
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Figure 1: Charge density difference (∆ρ) between the between the passivated perovskite
surface and the sum of isolated surface and passivating molecules sub-systems for each
m of value and (a) R=Methyl, m = 2. (b) R=tert-butyl, m = 4 . (c) R=Phenyl.
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