Supporting Information

Efficiency Enhancement and Doping Type Inversion in Cu₂CdSnS₄ Solar Cells by Ag Substitution

Ahmad Ibrahim,^a Stener Lie,^{ab} Joel Ming Rui Tan,^{ab} Ryan Swope,^c Axel Gon Medaille,^{def} Shreyash Hadke,^c Edgardo Saucedo,^{ef} Rakesh Agrawal ^c and Lydia Helena Wong ^{*abg}

- ^{*a*} School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. E-mail: lydiawong@ntu.edu.sg
- ^b Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore.
- ^c Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- ^d Solar Energy Materials and Systems Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià de Besòs, Barcelona, Spain
- ^e Photovoltaic Lab Micro and Nano Technologies Group (MNT), Electronic Engineering Department, EEBE, Universitat Politècnica de Catalunya (UPC), Av Eduard Maristany 10-14, 08019 Barcelona, Catalonia, Spain.
- ^f Barcelona Center for Multiscale Science & Engineering, Universitat Politècnica de Catalunya (UPC), Av Eduard Maristany 10-14, 08019 Barcelona, Catalonia, Spain.
- ^g Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553, Singapore.

Experimental Section

Substrate Cleaning: Commercial Mo-coated soda-lime glass (SLG) substrates were washed using water and soap, then subsequently subjected to ultrasonic bath cleaning of soapy water, ethanol, and deionized water, each for 5 minutes.

Absorber Preparation: Cu₂CdSnS₄ sol-gel solution was prepared by dissolving 0.52 mol L⁻¹ copper(II) acetate dihydrate Cu(CH₃COO)₂· 2H₂O (ACS reagent, \geq 98%), 0.33 mol L⁻¹ cadmium acetate dihydrate Cd(CH₃COO)₂· 2H₂O (reagent grade, 98%), 0.27 mol L⁻¹ tin(II) chloride dihydrate SnCl₂· 2H₂O (ACS reagent, 98%) and 2.06 mol L⁻¹ thiourea SC(NH₂)₂ (ReagentPlus[®], \geq 99.0%) in 2-methoxyethanol (anhydrous, 99.8%) and stirred for 2 hours at 50°C. Silver nitrate AgNO₃ (ACS reagent, \geq 99.0%) was also added for Ag incorporation, and the concentration was adjusted to the desired concentration relative to copper content (e.g., Ag/(Ag+Cu)) = 0.05 for 5% Ag). Ethanolamine (ACS reagent, \geq 99.0%) and triethylamine (\geq 99%) were also added as stabilizers. The (Cu+Ag)/(Cd/Sn) ratio was maintained at around 0.86, and Cd/Sn was about 1.25. All chemical reagents were purchased from Sigma-Aldrich without further purification.

Device Fabrication: The Cu₂CdSnS₄ solution was spin-coated onto the Mo-SLG substrate for 20 s at 4000 rpm and subsequently annealed in air for 2 minutes at 280°C. These subsequent steps were repeated 12 times. The deposited thin films were then annealed in argon and sulfur atmosphere for 40 minutes at 580°C in a two-zone furnace and were naturally cooled at room temperature. The cadmium sulfide buffer layer was deposited by chemical-bath deposition (CBD). The bath was prepared by mixing 20 mL cadmium sulfate (0.015M, ACS reagent, \geq 99.0%, Sigma-Aldrich), 20 mL 28-30% ammonium hydroxide solution (Thermo Scientific), 20 mL thiourea (0.75M, ReagentPlus[®], \geq 99.0%, Sigma-Aldrich) in 140 mL deionized water. The bath was continuously stirred throughout the CBD process for 8 minutes at 80°C. Finally, the indium-tin oxide layer was deposited by DC magnetron sputtering. The samples were delineated to form approximately 0.15 cm² device (active area) by mechanical scribing. Silver electrodes were then pasted to complete the device.

Characterization: X-ray diffraction patterns were acquired using Shimadzu XRD-6000. Scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) data were obtained using JEOL JSM-7600F field emission SEM (FESEM). Photoluminescence (PL) spectra were acquired using a Horiba/Jobin-Yvon LabRAM HR800 confocal microscope setup equipped with an InGaAs detector through a 10x objective lens using a He:Ne laser (632.8 nm excitation wavelength). Raman measurement was conducted using Renishaw's inVia Qontor, equipped with 2400 lines/mm visible grating and Leica DM2700 M microscope with 50x objective. The devices' current density-voltage (J-V) was measured by Keithley 2612A and VS-0852 light source to simulate AM1.5 and 100 mW cm⁻², calibrated by a certified Si reference cell. External quantum efficiency (EQE) measurement was obtained using a Bentham PVE300 system, and certified standard Si and Ge cell references were used for calibration. The voltage-biased EQE data was taken using an in-house built instrument with a preamplifier and lock-in amplifier for signal processing with a chopper frequency of 160 Hz. Capacitance-voltage (C-V) data were obtained using Autolab PGSTAT302N. Hall measurements were conducted using a parallel dipole line system on exfoliated absorber films.^{1–3}

Figure S1 Refinement plot for $(Cu_{1-x}Ag_x)_2CdSnS_4$ samples with x = a) 5%, b) 10%, c) 20%, d) 40%, e) 60%, and f) 80%.

Figure S2 Line-scan EDS for $(Cu_{1-x}Ag_x)_2CdSnS_4$ where a) x = 5% and b) x = 30%

Figure S3 Tauc plot of $(ahv)^2$ as a function of hv for $(Cu_{1-x}Ag_x)_2CdSnS_4$ films. Extracted bandgaps are included in the legend

Figure S4 Photoluminescence spectra of Cu2CdSnS4 films with various Ag concentrations

Film	Ag/(Cu+Ag)	(Cu+Ag)/(Cd+Sn)	Cd/Sn
Cu_2CdSnS_4	N/A	0.87	1.18
5% Ag	0.03	0.88	1.20
10% Ag	0.08	0.87	1.17
20% Ag	0.18	0.87	1.18
30% Ag	0.35	0.88	1.16
40% Ag	0.44	0.89	1.19
60% Ag	0.56	0.86	1.15
80% Ag	0.72	0.86	1.10
Ag ₂ CdSnS ₄	N/A	0.85	1.34

Table S1. Summary of elemental ratio obtained from EDS for various Ag concentrations

Figure S5 Apparent carrier concentration extracted from C-V measurement for Cu₂CdSnS₄ and 5% Ag device

Table S2. Apparent carrier concentration extracted from C-V device measurement (N_{C-V}) and Hall film measurement (P_{Hall})for Cu₂CdSnS₄ and 5% Ag

F !1	N _{C-V}	P _{Hall}	
Film	[cm- ³]	[cm- ³]	
Cu_2CdSnS_4	$2.0 imes 10^{17}$	$2.9 imes 10^{16}$	
5% Ag	$1.8 imes 10^{17}$	$3.0 imes 10^{16}$	

Table S3. Device parameters of the best (Cu_{1-x}Ag_x)₂CdSnS₄ devices for various Ag concentrations up to 60%

Device	Voc	J_{SC}	FF	η	E_g	Voc,sq-Voc
	[mV]	$[mA cm^{-2}]$	[%]	[%]	[eV]	[mV]
Cu_2CdSnS_4	549	21.89	57.16	6.87	1.39	560
5% Ag	550	24.23	57.89	7.72	1.41	577
10% Ag	566	22.69	58.09	7.46	1.41	559
20% Ag	477	20.50	49.22	4.82	1.41	650
30% Ag	441	14.30	32.98	2.08	1.45	723
40% Ag	280	9.29	33.88	0.88	1.51	941
60% Ag	161	8.87	25.30	0.36	1.63	1172

Figure S6 Extracted derivative from the EQE spectrum onset of CCTS, 5% Ag-CCTS, and CZTS (in-house) solar cell devices. The 13.8% CZTSSe EQE was extracted from the available source data in the literature.⁴

References

- 1 US Patents, US9041389B2, 2014, 0028306.
- 2 US Patents, US9772385B2, 2017.
- 3 O. Gunawan, Y. Virgus and K. F. Tai, A parallel dipole line system, *Appl. Phys. Lett.*, 2015, **106**, 062407
- J. Zhou, X. Xu, H. Wu, J. Wang, L. Lou, K. Yin, Y. Gong, J. Shi, Y. Luo, D. Li, H. Xin and Q. Meng, Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency, *Nat. Energy*, 2023, 8, 526–535.