Supporting Information

Low-cost and high-performance selenium indoor photovoltaics

Zhouqing Wei,^{ab} Wenbo Lu,^{ab} Zongbao Li,^c Mingjie Feng,^a Bin Yan,^a Jin-Song Hu,^{ab} Ding-Jiang Xue*^{ab}

^{a.} Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular

Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,

China. E-mail: djxue@iccas.ac.cn.

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China

^{c.} School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China

Fig. S1. Number of IoT device connections.¹

Fig. S2. The schematic energy level diagram of the Se solar cell device.^{2,3}

Fig. S3. XRD pattern of Se/MoO_x/Cu device stored in ambient atmosphere at room temperature for 1000 h.

Fig. S4. Raman spectrum of Se/MoO_x/Cu device after 1-month storage in air.

Fig. S5. V_{oc} -light intensity dependence of Se/Cu and Se/MoO_x/Cu devices.

Fig. S6. J-V curve of Se/Au device under standard one-sun illumination (100 mW cm⁻²).

Fig. S7. J-V curve of Se/Au device under indoor illumination at 500 lux.

Fig. S8. EQE spectra of Se/MoO_x/Cu device and integrated current density of the device under indoor illumination at 500 lux.

Component	Raw material	Price (\$/kg)	Weight (g/m ⁻²)	Material cost (\$/m ⁻²)
Front glass	3 mm glass (with AR)	1.25	8000	10.00
FTO	FTO	330	3.48	1.15
TiO ₂	Titanium diisopropoxide bis(acetylacetonate) (75 wt. % in isopropanol)	70	50	3.50
Se	Se	33	9.62	0.32
Au	Au	63400	1.55	98.30
Ag	Ag	798	0.84	0.67
Cu	Cu	9.6	0.72	0.007
MoO _x	MoO _x	24	0.07	0.002

Table S1. Materials cost of Se photovoltaic devices.^{4,16-19}

Thickness	Voc (V)	Jsc (mA cm ⁻²)	FF (%)	PCE (%)
5 nm	0.84	11.0	51.7	4.8
10 nm	0.87	11.2	54.0	5.3
15 nm	0.89	11.4	53.6	5.4
20 nm	0.86	11.1	53.9	5.1
30 nm	0.85	10.9	51.8	4.8

Table S2. Summary of photovoltaic parameters of Se/MoO_x/Cu devices with different thicknesses of MoO_x .

devices	$V_{oc}(V)$	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
Se/Au	0.89	11.5	55.0	5.6
Se/MoO _x /Au	0.90	11.9	54.1	5.8
Se/Cu	0.65	10.1	48.4	3.2
Se/MoO _x /Cu	0.89	11.4	53.6	5.4

Table S3. Summary of photovoltaic parameters of Se devices with and without a MoO_x layer of 15 nm.

Active Material	Light Source	Luminance (Lux)	PCE (%)
a-Si	LED	500	9.6 ⁵
CIGS	Halogen	500	10.2^{6}
GaAs	LED	580	19.4 ⁷
DSC	LED	1000	28.9 ⁸
CH ₃ NH ₃ PbI ₃	FL	1000	35.29
(CsFAMA)Pb(I _{1-x} Br _x) ₃	LED	1000	40.210
$Cs_3Sb_2I_9$	LED	1000	9.211
$Cs_3Sb_2Cl_xI_{9-x}$	FL	1000	4.9 ¹²
TPD-3F-51K:IT-4F	FL	1000	21.813
P3HT:ICBA	LED	500	13.414
BDT-2T-ID:PNP	LED	200	16.015
Se(Au)	LED	500	11.0
Se(Cu)	LED	500	10.4

Table S4. Materials and incident light source dependent performance of IPV devices.

References

- (1) I. Mathews, S. N. Kantareddy, T. Buonassisi and I. M. Peters, Joule, 2019, 3, 1415-1426.
- (2) I. Hadar, T. B. Song, W. Ke and M. G. Kanatzidis, Advanced Energy Materials, 2019, 9.
- (3) T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and X. Gong, *Energy & Environmental Science*, 2012, **5**.
- (4) Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao, Y. Li, H. Zhou and Q. Chen, *Joule*, 2018, **2**, 1559-1572.
- (5) M.-H. Kao, C.-H. Shen, P.-c. Yu, W.-H. Huang, Y.-L. Chueh and J.-M. Shieh, *Scientific Reports*, 2017, 7.
- (6) A. Virtuani, E. Lotter, M. Powalla, U. Rau and J. H. Werner, *Thin Solid Films*, 2004, **451-452**, 160-165.
- (7) A. S. Teran, J. Wong, W. Lim, G. Kim, Y. Lee, D. Blaauw and J. D. Phillips, *IEEE Transactions on Electron Devices*, 2015, **62**, 2170-2175.
- (8) M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel and A. Hagfeldt, *Nature Photonics*, 2017, **11**, 372-378.
- (9) M. Li, C. Zhao, Z. K. Wang, C. C. Zhang, H. K. H. Lee, A. Pockett, J. Barbé, W. C. Tsoi, Y. G. Yang, M. J. Carnie, X. Y. Gao, W. X. Yang, J. R. Durrant, L. S. Liao and S. M. Jain, *Advanced Energy Materials*, 2018, **8**.
- (10) C. Dong, X. M. Li, C. Ma, W. F. Yang, J. J. Cao, F. Igbari, Z. K. Wang and L. S. Liao, *Advanced Functional Materials*, 2021, **31**.
- (11) A. Singh, P.-T. Lai, A. Mohapatra, C.-Y. Chen, H.-W. Lin, Y.-J. Lu and C. W. Chu, *Chemical Engineering Journal*, 2021, **419**.
- (12) Y. Peng, T. N. Huq, J. Mei, L. Portilla, R. A. Jagt, L. G. Occhipinti, J. L. MacManus-Driscoll, R. L. Z. Hoye and V. Pecunia, *Advanced Energy Materials*, 2020, 11.
- (13) C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang and A. Facchetti, *Joule*, 2020, 4, 189-206.
- (14) J. S. Goo, S.-C. Shin, Y.-J. You and J. W. Shim, *Solar Energy Materials and Solar Cells*, 2018, 184, 31-37.
- (15) R. Arai, S. Furukawa, Y. Hidaka, H. Komiyama and T. Yasuda, *ACS Applied Materials & Interfaces*, 2019, **11**, 9259-9264.
- (16) Alibaba, https://www.alibaba.com/.
- (17) Alfa Aesar, https://www.alfa.com/zh-cn/.
- (18) Aladdin, https://www.aladdin-e.com/.
- (19) Http://www.shmet.com/.