Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting information

One Dimensional Amorphous Porous Iridium-Ruthenium Oxide for Efficient Acidic Oxygen Evolution Reaction

Lamei Li,^{§,a} Zifang Cheng,^{§,a} Jiaqi Su,^a Beibei Song,^a Hao Yu,^b Yujin Ji,^{*,b} Qi Shao,^{*,a} and Jianmei Lu^{*,a}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China. E-mails: qshao@suda.edu.cn; lujm@suda.edu.cn
^b College of Chemistry, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China. E-mails: yjji@suda.edu.cn

§ These authors contributed equally to this work.

This PDF file includes: Supplementary Figure S1 to S21 Supplementary Table S1

Figure S1. Photographs of reaction mixture at different stages of $SrIr(OH)_6$ NBs synthesis. (a) H_2IrCl_6 aqueous solution, (b) $H_2IrCl_6 + KOH$ mixture before heating, (c) $H_2IrCl_6 + KOH$ mixture after 30 min heating under 70 °C and (d) final products of $SrIr(OH)_6$ NBs after adding $SrCl_2$.

Figure S2. (a) TEM image, (b) SEM-EDS spectra of $SrIr(OH)_6$ NBs, (c) UV-vis spectra of reaction mixtures under different steps and (d) component fractions of different catalysts with different feeding ratios.

Figure S3. (a, c, e) TEM images and (b, d, f) SEM-EDS spectra of Ir_1Ru_2 NBs, Ir_1Ru_3 NBs and Ir_1Ru_4 NBs.

Figure S4. SEM-EDS spectra of Ir_1Ru_3 NBs in the time-tracking experiment at (a) 0 min, (b) 20 min, (c) 40 min, (d) 60 min, (e) 80 min, (f) 90 min, (g) 100 min, (h) 110 min and (i) 120 min.

Figure S5. (a, b) SEM images of Am-Ir₁Ru₃O₈ NBs-250.

Figure S6. (a, c) TEM images and (b, d) PXRD patterns of $Am-Ir_1Ru_3O_8$ NBs-200 and $Am-Ir_1Ru_3O_8$ NBs-300.

Figure S7. (a) The LSV curves and (b) nyquist plots recorded of $Am-Ir_1Ru_3O_8$ NBs-200, $Am-Ir_1Ru_3O_8$ NBs-250 and $Am-Ir_1Ru_3O_8$ NBs-300.

Figure S8. (a, c, e) TEM images and (b, d, f) PXRD patterns of Am-SrIrO₃ NBs-250, Am-Ir₁Ru₂O₆ NBs-250 and Am-Ir₁Ru₄O₁₀ NBs-250.

Figure S9. (a, b, c) SEM-EDS spectra of Am- $Ir_1Ru_2O_6$ NBs-250, Am- $Ir_1Ru_3O_8$ NBs-250 and Am- $Ir_1Ru_4O_{10}$ NBs-250.

Figure S10. (a, c) HAADF-STEM-EDS mapping and (b, d) HAADF-STEM-EDS of Am-Ir_1Ru_3O_8 NBs-250.

Figure S11. The OER polarization curves of Am-Ir₁ Ru_2O_6 NBs-250, Am-Ir₁ Ru_3O_8 NBs-250 and Am-Ir₁ Ru_4O_{10} NBs-250.

Figure S12. CV curves scanned in the non-faradaic potential window of -0.15 V to - 0.25 V at different scan rates for (a) Am-Ir₁Ru₂O₆ NBs-250, (b) Am-Ir₁Ru₄O₁₀ NBs-250 and (c) charging current plotted against scan rate of Am-Ir₁Ru₂O₆ NBs-250, Am-Ir₁Ru₃O₈ NBs-250 and Am-Ir₁Ru₄O₁₀ NBs-250. The slope of the fitted line represents C_{dl} .

Figure S13. Nyquist plots of Am-Ir $_1Ru_2O_3$ NBs-250, Am-Ir $_1Ru_3O_8$ NBs-250 and Am-Ir $_1Ru_4O_{10}$ NBs-250.

Figure S14. CV curves scanned in the non-faradaic potential window of -0.25 V to - 0.15 V at different scan rates for (a) Am- $Ir_1Ru_3O_8$ NBs-250, (b) Am-SrIrO₃ NBs-250 and (c) RuO₂ and (d) IrO₂.

Figure S15. Faraday Efficiency of Am-Ir₁Ru₃O₈ NBs-250 during stability test.

Figure S16. (a) TEM of $Am-Ir_1Ru_3O_8$ NBs-250 before stability test, (b) TEM, (c) SEM-EDS spectra and (d) XRD of $Am-Ir_1Ru_3O_8$ NBs-250 after stability test.

Figure S17. LSV curves of (a) $Am-Ir_1Ru_3O_8$ NBs-200, $Am-Ir_1Ru_3O_8$ NBs-250 and $Am-Ir_1Ru_3O_8$ NBs-300 and (b) $Am-Ir_1Ru_3O_8$ NBs-200, RuO_2 and IrO_2 in 0.5 M H_2SO_4 .

Figure S18. (a) Ir 4*f*, (b) Ru 3*p* XPS spectra and (c) the radio of Ir4*p* to Ru3*p* of Am-Ir₁Ru₃O₈ NBs-250 after stability test.

Figure S19. The photographs of the PEM electrolyzer.

Figure S20. Free energy evolution diagram of four-electron OER on RuO_2 (110) surface.

Figure S21. Potential calibration of the saturated calomel electrode (SCE) in 0.1 M HClO₄ electrolyte. The calibration of SCE reference electrode is performed in a standard three-electrode system with polished Pt wires as the working and counter electrodes, and the SCE as the reference electrode. Electrolytes are pre-purged and saturated with high purity H₂. Linear scanning voltammetry (LSV) is then run at a scan rate of 5 mV s⁻¹, and the potential at which the current crossed zero is taken to be the thermodynamic potential (vs. SCE) for the hydrogen electrode reactions. For example, in 0.1 M HClO₄, the zero current point is at -0.3 V, so E (RHE) = E (SCE) + 0.3 V.

Catalyst	Electrolyte	η (mV)	Ref.
Am-Ir ₁ Ru ₃ O ₈ NBs-250	0.1 M HClO4	204 @ 10 mA cm ⁻ 2	This Work
Nb _{0.1} Ru _{0.9} O ₂	0.5 M H ₂ SO ₄	204 @ 10 mA cm ⁻ 2	Joule 2023, 7, 558-573
Ru ₃ Ir ₁ O _x	0.5 M H ₂ SO ₄	231 @ 10 mA cm ⁻ 2	Adv. Energy Mater. 2021, 11, 2102883
RuIr-NC	0.05 M H ₂ SO ₄	$165 @ 10 \text{ mA cm}^{-2}$	Nat. Commun. 2021, 12, 1145
AD-HN-Ir	0.5 M H ₂ SO ₄	216 (a) 10 mA cm ⁻ $_{2}$	Nat. Commun. 2021, 12, 6118
Ni-RuO ₂	0.1 M HClO ₄	214 @ 10 mA cm ⁻ 2	Nat. Mater. 2023, 22, 100-108
Ru@IrO _X	0.05 M H ₂ SO ₄	$282 @ 10 \text{ mA cm}^{-2}$	Chem 2019, 5, 445-459
RuIr	0.5 M H ₂ SO ₄	239 @ 10 mA cm ⁻ 2	J. Am. Chem. Soc. 2021, 143, 6482-6490
SrRu	0.5 M H ₂ SO ₄	238 (a) 10 mA cm ⁻ $_{2}$	J. Am. Chem. Soc. 2021, 143, 6482-6490
Co-RuIr	0.1 M HClO ₄	235 @ 10 mA cm ⁻ 2	Adv. Mater. 2019, 31, 1900510
6H-SrIrO ₃	0.5 M H ₂ SO ₄	248 @ 10 mA cm ⁻ $_{2}$	Nat. Commun. 2018, 9, 5236
RuIr@CoNC	0.5 M H ₂ SO ₄	223 @ 10 mA cm ⁻ 2	ACS Catal. 2021, 11, 3402-3413
Nano RuO ₂	0.5 M H ₂ SO ₄	$232 @ 10 \text{ mA cm}^{-2}$	ACS Catal. 2019, 10, 1152-1160
Re-IrO ₂	0.5 M H ₂ SO ₄	$255 @ 10 \text{ mA cm}^{-2}$	Small 2023, 19, 2207847
AD-HN-Ir	0.5 M H ₂ SO ₄	$216 @ 10 \text{ mA cm}^{-2}$	Nat. Commun. 2021, 12, 6118

Table S1. Comparison of previous reported Ru or Ir-based catalysts in acidic electrolyte.