Electronic Supplementary Information (ESI)

Negative-pressure sulfurization of antimony sulfide thin films for generating record opencircuit voltage of 805 mV in solar cell applications

Xiaoqi Peng,^{#ab} Junjie Yang,^{#ab} Qi Zhao,^{ab} Huihui Gao,^{ab} Yuqian Huang,^{ab} Haolin Wang,^{ab} Changfei Zhu,^{ab} Rongfeng Tang,^{*ab} and Tao Chen^{*ab}

a. Hefei National Research Center for Physical Sciences at the Microscale, CAS Key

Laboratory of Materials for Energy Conversion, Department of Materials Science and

Engineering, School of Chemistry and Materials Science, University of Science and

Technology of China, Hefei, 230026, China.

b. Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230051, China.

*Corresponding authors: Rongfeng Tang, Tao Chen

E-mail: rftang@ustc.edu.cn, tchenmse@ustc.edu.cn

[#] These authors contributed equally to this work.

This file includes:

Supplementary note S1 to S2

Figure S1 to S10

Table S1 to S4

References

Supplementary Note

Note 1

Principles of Deep-level Transient Spectroscopy

We conducted deep-level transient spectroscopy (DLTS) to detect the deep-level defects properties and the defect level is identified from DLTS signal using Fourier deconvolution algorithm. The active energy (E_a , E_C - E_T or E_T - E_V) and capture cross section of electron traps and hole traps can be calculted by the Arrhenius Equations (1) and (2),

$$ln(\tau_e v_{th,p} N_V) = \frac{E_T - E_V}{k_B} \frac{1}{T} - \ln\left(X_p \sigma_p\right) \#(1)$$

$$ln(\tau_e v_{th,n} N_C) = \frac{E_C - E_T}{k_B} \frac{1}{T} - \ln \left(X_n \sigma_n \right) \#(2)$$

where τ_{e} , N_{V} , N_{C} , E_{T} , E_{V} , and E_{C} are emission time constant, valence band state density, conduction band state density, trap energy level, valence band, and conduction band, respectively. $v_{th,n/p}$, $X_{n/p}$, and $\sigma_{n/p}$ are thermal velocity, entropy factor, and capture cross-section for electron and hole, respectively. E_{a} can be obtained from the slope of the corresponding line, and the σ can be obtained from the y-intercept of the lines. The trap concentration (N_{T}) can be acquired from Equation (3):

$$N_T = 2N_S \frac{\Delta C}{C_R} \#(3)$$

where $N_{\rm S}$ is the shallow donor concentration, $C_{\rm R}$ is the capacitance under reverse bias, while ΔC represents the amplitude of transient capacitance.

The product of the capture cross section and the defect density ($\sigma \times N_T$) is considered as an important parameter for the intuitive evaluation of the carrier lifetime, and the relationship follows the following Equation (4):

$$\tau_{trap} = \frac{1}{\upsilon \sigma N_T} \#(4)$$

where v is the thermal velocity of electric charge.^{1, 2}

Note 2

Calculation of Texture Coefficient

The preferred orientation of the film can generally be described qualitatively by texture coefficient (TC). According to the previous work,³ the calculation of TC for a given crystal planes for our Sb₂S₃ film is based on the following Equation (5) :

$$TC_{hkl} = \frac{I_{(hkl)}}{I_{0(hkl)}} / (\frac{1}{N} \sum_{i=1}^{N} \frac{I_{(h_i k_i l_i)}}{I_{0(h_i k_i l_i)}}) \#(5)$$

where $I_{(hkl)}$ is the diffraction peak intensity of (hkl) plane in the measured XRD pattern, while $I_{0(hkl)}$ is the diffraction peak intensity of (hkl) plane in the standard XRD pattern (for Sb₂S₃ film, JCPDS 42-1393) and N is the number of Prague reflections considered. The larger TC indicates the preferred orientation on the crystal plane, and the TC greater than 1 indicates the preferred orientation.

In our work, we have selected five main (hk1) plans and five main (hk0) plans to be included in the calculation of texture coefficient, which are respectively (120), (220), (130), (320), (240), (101), (111), (211), (221), and (301). So here, the value of N is 10. The specific calculation results are shown in the table below. It can be seen from the data in the table that compared with the reference Sb₂S₃-HP, the film of Sb₂S₃-S-TF shows a higher $TC_{(hk1)}$ and a lower $TC_{(hk0)}$, which indicates that the grain growth in the film is dominated by vertical growth and has better charge transport capability.

	Sb ₂ S ₃ -HP	Sb ₂ S ₃ -TF	Sb ₂ S ₃ -S-TF	Sb ₂ S ₃ -HP-TF
$TC_{(120)}$	1.07707	0.81729	0.66133	1.10156
()				
TC ₍₂₂₀₎	1.63687	1.39281	0.89967	1.73101
(220)				

TC ₍₁₃₀₎	0.86199	0.90851	0.74806	0.94287
TC ₍₃₂₀₎	1.53940	1.33592	0.95887	1.69432
TC ₍₂₄₀₎	1.22544	0.75690	0.58817	1.34318
TC ₍₁₀₁₎	0.37954	0.73215	0.79005	0.33497
TC ₍₁₁₁₎	0.45793	0.82540	1.14163	0.50819
TC ₍₂₁₁₎	0.47821	0.83663	0.98007	1.46801
TC ₍₂₂₁₎	0.67871	0.89138	0.98214	0.63334
TC ₍₃₀₁₎	1.66483	1.50301	2.25002	1.24255

Supplementary Figure

Fig. S1. Cross section SEM image of the full device

Fig. S2. Characterization of structure and surface morphology of the films. (a) Raman spectra of Sb₂S₃-HP, Sb₂S₃-TF, Sb₂S₃-S-TF, and Sb₂S₃-HP-TF films. The surface SEM morphologies of films, (b) Sb₂S₃-TF and (c) Sb₂S₃-HP-TF.

The Raman spectras of Sb_2S_3 -HP, Sb_2S_3 -TF, Sb_2S_3 -S-TF, and Sb_2S_3 -HP-TF are shown in Fig. S2. The peaks at position of 121 cm⁻¹, 151 cm⁻¹, 189 cm⁻¹, 235 cm⁻¹, 280 cm⁻¹, and 309 cm⁻¹ in the four samples are all from Sb_2S_3 .⁴ In specific, the peaks at 189 cm⁻¹ and 235 cm⁻¹ belong to the asymmetric and symmetric bending vibration of S-Sb bond, respectively, while 280 cm⁻¹ and 309 cm⁻¹ can be assigned to the asymmetric and symmetric tensile vibration of S-Sb bond. The above

four peaks indicates S and Sb interact in the A_g modes, while the appearance of peaks located around 121 cm⁻¹ and 151 cm⁻¹ indicates good crystallinity of Sb₂S₃.⁵

Fig. S3. UV-visible absorption characterization of the films. (a) UV-vis absorption spectrum of the films. (b) Tauc plots of $(\alpha h v)^2$ versus hv. The direct band gap E_g are calculated according to the equation of $(\alpha h v)^2 = A (hv - E_g)$, where α is the absorption coefficient, h is the planck constant, v is the frequency of the incident photon, and A is a proportionality constant.

Fig. S4. Ultraviolet Photoelectron Spectroscopy spectra. (a) Sb_2S_3 -HP, (b) Sb_2S_3 -S-TF. Valance band spectra of (c) Sb_2S_3 -HP, (d) Sb_2S_3 -S-TF.

The conduction band position ($E_{\rm C}$), valence band position ($E_{\rm V}$), Fermi energy level ($E_{\rm F}$), and work function (Φ) of the films can be obtained from the UV-vis and UPS results according to the following equations:

 $\Phi = |E_{SECO} - 21.22 \text{ eV} (Ultraviolet photon energy)|\#(6)$

 $E_V = - |\Phi + E_{ONSET}| \#(7)$

$$E_C = E_V + E_a \#(8)$$

where E_{SECO} is defined as the secondary electron cut off, and E_{ONSET} refers to the maximum valence band, while ϕ represents the work function, and is defined as the difference between E_{F} and vacuum energy level.

Fig. S5. Characterization of surface morphology and structure of the films. SEM images of (a) the as-prepared Sb₂S₃ precursor films, (b) Sb₂S₃ crystalline films obtained through rapid

thermal annealing on hot plate in glove box for 30 mins, (c) the film obtained through slow thermal annealing on hot plate in glove box (the heating time from room temperature to 350 °C is 20 mins and the holding time is 10 mins). (d) XRD patterns of the corresponding films.

Fig. S6. XRD characterization. XRD patterns of Sb_2S_3 films obtained by process of rapid thermal annealing, slow annealing on hot plate in glove box and slow annealing in tube furnace, respectively.

Fig. S7. AFM images of the films. (a) Sb_2S_3 -HT (R_q =42.8 nm), (b) Sb_2S_3 -S-TF (R_q =50.6 nm).

Fig. S8. SEM images of the films. SEM images of the surface morphology of Sb_2S_3 films annealed slowly in glove box for (a) 30 mins, and (b) 60 mins, and with a heating time controlled at 20 mins. (c) XRD patterns of the corresponding films.

We further prolonged the annealing time to 30 mins and 60 mins (Fig. S8). The morphology of the obtained two films exhibit significant changes, with a significant increase of the tiny particles on the film surface, and an increase in the content of oxygen element detected by EDS. Furthermore, new peaks appear in the XRD pattern of the two films obtained after 30 mins and 60 mins of anneling treatment. The peak at 13.34° in the former belongs to (111) of Sb₂O₃ phase, while the peak at 20.12° in the latter belongs to (110) of Sb₂O₃ phase.

Fig. S9. High-resolution XPS spectra of S 2p and Sb 3d for Sb₂S₃-HP, Sb₂S₃-TF, Sb₂S₃-S-TF, and Sb₂S₃-HP-TF films.

Through X-ray Photoelectron Spectroscopy (XPS), we analyzed the chemical composition and elemental valence states of the films. The high-resolution core spectra of S 2p and Sb 3d are shown in Fig. S9, and the binding energy of the corresponding separated peaks are listed in table S3. Specifically, the two peaks with binding energy around 161.32 eV and 162.55 eV belong to the S $2p_{3/2}$ and S $2p_{1/2}$, while the peaks with binding energy around 529.41 eV and 538.80 eV can be attributed to Sb $3d_{5/2}$ and Sb $3d_{3/2}$ of Sb³⁺ that bond with S²⁻ in Sb₂S₃. However, the separated peaks at position of around 530.65 eV and 539.90 eV originates from Sb₂O₃². Furthermore, the Sb₂S₃-TF film shows the highest content of Sb₂O₃ due to the long heat treatment time. In Sb₂S₃-S- TF film, the content of Sb_2O_3 is significantly reduced, and the detected Sb_2O_3 is mainly caused by the inevitable adsorption of oxygen in the air.

Fig. S10. Photovoltaic performance of the devices. (a) J-V curves of the solar cells based on Sb₂S₃-TF and Sb₂S₃-HP-TF. (b) The corresponding EQE spectra of the devices.

Supplementary Table

Table S1. The ratio of V_{OC} , J_{SC} , FF, and PCE to the corresponding S-Q limit value for the current best devices based on planar- and sensitized-structure antimony sulfide solar cells², ^{6, 7}.

Materials	Types		$V_{\rm OC}$ (V)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
Sb2S3(1.68 eV)Mesop		Champion	0.757	17.41	60.48	8.00
	Planar	S-Q limit	1.398	23.06	90.87	29.28
		Champion/ S-Q	54.1%	75.5%	66.6%	27.3%
	Mesoporous	Champion	0.711	16.10	65.00	7.50
		S-Q limit	1.398	23.06	90.87	29.28
		Champion/ S-Q	50.9%	69.8%	71.5%	25.6%

Table S2. EDS results of the films.

Films	Sb (%)	S (%)	Cd (%)	(S-Cd)/Sb
Sb ₂ S ₃ -HP	36.8	58.5	4.7	1.462
Sb ₂ S ₃ -TF	36.4	58.1	5.5	1.444
Sb ₂ S ₃ -S-TF	37.8	59.7	2.5	1.513
Sb ₂ S ₃ -HP-TF	39.4	59.4	1.2	1.477

	S 2P						
Films	S 2P _{3/2}	S 2P _{1/2}	Sb-S 3d _{5/2}	Sb-O 3d _{5/2}	Sb-S 3d _{3/2}	Sb-O 3d _{3/2}	Sb ₂ O ₃ / Sb ₂ S ₃
Sb ₂ S ₃ -HP	161.30	162.54	529.41	530.44	538.76	539.96	0.483
Sb ₂ S ₃ -TF	161.32	162.55	529.41	530.65	538.80	539.98	0.643
Sb ₂ S ₃ -S-TF	161.37	162.62	529.44	530.69	538.84	539.93	0.388
Sb ₂ S ₃ -HP-TF	161.34	162.58	529.41	530.64	538.79	540.01	0.417

Table S3. Binding energies of the separated S2p and Sb3d XPS peaks in the Sb₂S₃-HP, Sb₂S₃-TF, Sb₂S₃-S-TF, and Sb₂S₃-HP-TF films.

Table S4. Five main optimization parameters involved in the sulfurization process. Photovoltaic performance of the devices based on the films obtained in the following conditions: with or whithout post-annealing, different weights of sulfur powder, different sulfurization time, different sulfurization temperature, and the distance between sulfur powder and the substrate.

Post-annealing	$V_{\rm OC}({ m mV})$	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)	
without	724	724 10.59		4.16	
with	802	12.67	61.23	6.22	
Weight of sulfur powder (g)	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)	
0.025	754	12.09	58.04	5.29	
0.050	811	11.65	63.04	5.96	
0.100	792	12.06	63.88	6.11	
0.200	782	12.06	56.77	5.35	
Sulfurization time (mins)	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)	
5	782	10.05	53.88	4.24	
10	792	792 12.69		6.41	

15	773	12	12.21		5.26	6.16
20	754		12.52		8.61	5.53
Sulfurization temperature (°C)	$V_{\rm OC}({ m mV})$	$J_{ m SC}$	$J_{\rm SC}$ (mA cm ⁻²)		· (%)	PCE (%)
350	734		11.53		9.64	4.20
360	773		11.56		5.40	5.85
370	802		12.18		3.26	6.18
380	791		11.94 5		8.31	5.51
Distance between su powder and substrate	ween sulfur ubstrate (cm) V _{OC} (n		J _{SC} (mA c	m ⁻²)	FF (%)	PCE (%)
6	6	99	9.52		50.21	3.34
8	7	82	12.20		60.41	5.76
10	791		12.80		62.12	6.29
12	7	73	12.34		59.26	5.65

The optimal sulfurization condition we ultimately used was 0.1 g of sulfur powder, and sulfurized at 370 °C for 10 mins. The distance between the sulfur powder and the substrate was controlled at 10 cm, but no further post-annealing treatment was required.

References

- Y. Zhao, S. Wang, C. Li, B. Che, X. Chen, H. Chen, R. Tang, X. Wang, G. Chen, T. Wang,
 J. Gong, T. Chen, X. Xiao and J. Li, *Energy & Environmental Science*, 2022, 15, 5118-5128.
- S. Wang, Y. Zhao, B. Che, C. Li, X. Chen, R. Tang, J. Gong, X. Wang, G. Chen, T. Chen, J. Li and X. Xiao, *Adv Mater*, 2022, 34, e2206242.
- R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M. A. Green and T. Chen, *Nature Energy*, 2020, 5, 587-595.
- 4. W. Lian, C. Jiang, Y. Yin, R. Tang, G. Li, L. Zhang, B. Che and T. Chen, Nat Commun,

2021, **12**, 3260.

- 5. R. Parize, T. Cossuet, O. Chaix-Pluchery, H. Roussel, E. Appert and V. Consonni, *Mater Design*, 2017, **121**, 1-10.
- Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim and S. I. Seok, *Advanced Functional Materials*, 2014, 24, 3587-3592.
- 7. C. Chen and J. Tang, *Acs Energy Lett*, 2020, **5**, 2294-2304.