Supporting Information

Photo-Enhanced Piezocatalytic Hydrogen Evolution by In Situ Silver Piezodeposited Scheelite–type BaMoO₄ and BaWO₄

Talha Kuru^a, Adem Sarilmaz^b, Emre Aslan^c, Faruk Ozel^{*b}, Imren Hatay Patir^{*a}

Band-gap Calculation

The band-gap values and types of piezo-catalysts were determined by following the steps below.¹⁻⁴

- 1. Diffuse reflection measurements were performed to investigate optical properties and band-gap calculations.
- **2.** Absorption ($F(R_{\infty})$) was calculated using the Kubelka-Munk equation ($F(R_{\infty})=(1-R_{\infty})^2/2R_{\infty}$).
- Approximately band-gaps were estimated by plotting d[ln(F(R_∞)hu)]/[hu] vs. photon energy graphs (BaMoO₄: 3.01 eV and BaWO₄: 2.96 eV).
- 4. Approximately band gaps were used to determine the m exponent in the Tauc equation (F(R_∞)hυ = A(hυ-Eg)^m). In(F(R_∞)hu) vs. In(hu-Eg) graphs were plotted, and m exponents were determined from the slope of the plot (BaMoO₄: 0.399 and BaWO₄: 0.409). These values are close to 0.5 indicating that piezo-catalysts have the direct band transition type.
- The band-gaps were calculated by plotting (F(R_∞)hu)² vs. photon energy graphs (BaMoO₄: 3.32 eV and BaWO₄: 2.93 eV).

Figure S1. White LED light spectrum

Figure S2. Band-gap energy graphs (**a**,**d**), $d[ln(F(R_{\infty})hu)]/[hu]$ vs. photon energy graphs (**b**,**e**), $ln(F(R_{\infty})hu)$ vs. ln(hu-Eg) graphs (**c**,**f**) of BaMoO₄ (**a**-**c**) and BaWO₄ (**d**-**f**). Diffuse reflection graphs were given as an inset figure in the band-gap energy diagrams.

Figure S3. Mott-Schottky plots of (a) BaWO₄ and (b) BaMoO₄ in 0.1M NaSO₄. V vs. NHE at pH=7

Figure S4. Piezocatalytic hydrogen production results of **(a)** BaWO₄ and **(b)** BaMoO₄ depending on Ag piezodeposition at 0.5, 1 and 2 mM AgNO₃ concentrations

Figure S5. The piezocatalytic hydrogen production of **(a)** BaWO₄, BaWO₄/Ag, **(b)** BaMoO₄ and BaMoO₄/Ag for 6 hour.

Figure S6. Reusability experiments for piezocatalytic hydrogen production of **(a)** BaWO₄, **(b)** BaMoO₄, **(c)** BaWO₄/Ag and **(d)** BaMoO₄/Ag for 6 cycles

Figure S7. Nyquist plots of BaMoO₄ and BaWO₄ from Electrochemical Impedance Spectroscopy (EIS).

Table S1. Comparison of H₂ production rates of different piezocatalysts

Catalyst	Catalytic Condition	Scavenger	H ₂ production	Ref
ZnS nanosheet	Ultrasonic: 100 W 27 kHz	Pure Water	1080 µmol h ⁻¹ g ⁻¹	5
BaTiO ₃ nanoparticle	Ultrasonic: 100 W 40 kHz	15% TEOA	2 µmol h ⁻¹ g ⁻¹	6
BaTiO ₃ nanowire	Ultrasonic: 100 W 40 kHz	15% TEOA	18 µmol h ⁻¹ g ⁻¹	6
BaTiO ₃ nanosheet	Ultrasonic: 100 W 40 kHz	15% TEOA	92 µmol h ⁻¹ g ⁻¹	6
Bi ₂ WO ₆ nanoplate	Ultrasonic: 40 kHz	20% TEOA	191 µmol h ⁻¹ mg ⁻¹	7
CdS nanosheet	Ultrasonic: 50 kHz	Na ₂ S/Na ₂ SO ₃	144 µmol h ⁻¹ mg ⁻¹	8
CdS nanosheet	Ultrasonic: 50 kHz Light: 300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	633 µmol h⁻¹ mg⁻¹	8
bulk g-C ₃ N ₄	Ultrasonic: 250 W 40 kHz	0.1 M Glucose	2690 µmol g ⁻¹ h ⁻¹	9
Ultra thin g-C ₃ N ₄	Ultrasonic: 250 W 40 kHz	0.1 M Glucose	8350 µmol g⁻¹ h⁻¹	9
Ultra thin g-C ₃ N ₄	Ultrasonic: 50 kHz Light: λ ≥ 420 nm	0.1 M Glucose	12160 µmol g⁻¹ h⁻¹	9
BaWO ₄	Ultrasonic: 50 kHz	5% TEOA, pH = 9	312.58 µmol g ⁻¹ h ⁻¹	This Work
BaMoO ₄	Ultrasonic: 50 kHz	5% TEOA, pH = 9	197.97 µmol g ⁻¹ h ⁻¹	This Work
BaWO ₄	Ultrasonic: 50 kHz Light: White LED Light, λ ≥ 420 nm	5% TEOA, pH = 9	1103 µmol g ⁻¹ h ⁻¹	This Work
BaMoO ₄	Ultrasonic: 50 kHz Light: White LED Light, λ ≥ 420 nm	5% TEOA, pH = 9	788.76 µmol g ⁻¹ h ⁻¹	This Work

References

- 1. A. Sarilmaz, G. Yanalak, E. Aslan, F. Ozel, I. H. Patir and M. Ersoz, Renewable Energy, 2021, 164, 254-259.
- 2. G. Yanalak, A. Sarılmaz, G. Karanfil, E. Aslan, F. Ozel and I. H. Patir, Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112462.
 T. L. Le, S. Guillemet-Fritsch, P. Dufour and C. Tenailleau, *Thin Solid Films*, 2016, 612, 14-21.
 M. Borah and D. Mohanta, *Journal of Applied Physics*, 2012, 112.
- 3.
- 4.
- W. Feng, J. Yuan, L. Zhang, W. Hu, Z. Wu, X. Wang, X. Huang, P. Liu and S. Zhang, Applied Catalysis B: 5. Environmental, 2020, 277, 119250.
- 6. C. Yu, M. Tan, Y. Li, C. Liu, R. Yin, H. Meng, Y. Su, L. Qiao and Y. Bai, Journal of Colloid and Interface Science, 2021, 596, 288-296.
- 7. X. Xu, L. Xiao, Z. Wu, Y. Jia, X. Ye, F. Wang, B. Yuan, Y. Yu, H. Huang and G. Zou, Nano Energy, 2020, 78, 105351.
- Y. Zhao, X. Huang, F. Gao, L. Zhang, Q. Tian, Z.-B. Fang and P. Liu, *Nanoscale*, 2019, **11**, 9085-9090. 8.
- C. Hu, F. Chen, Y. Wang, N. Tian, T. Ma, Y. Zhang and H. Huang, Advanced Materials, 2021, 33, 2101751. 9.