Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Chemicals and materials

Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), 2-methylimidazole, potassium hydroxide (KOH), sodium hydroxide (NaOH), ammonium chloride (NH₄Cl), ammonium chloride-¹⁵N (¹⁵NH₄Cl), paminobenzenesulfonamide, potassium sodium tartrate, potassium nitrate (KNO₃), potassium nitrate-¹⁵N (K¹⁵NO₃), mercuric iodide (HgI₂) and potassium iodide (KI) were obtained from Aladdin (Shanghai, China). hydrochloric acid (HCl) and ethanol (C₂H₅OH) were purchased from Beijing Chemical Works. DMAB was purchased from Macklin (Shanghai, China).

Characterization

The ZEISS Gemini 500 scanning electron microscopy (SEM) and a field emission scanning electron microscope (FE-SEM, HITACHI Regulus 8100) were performed to characterize the morphology of the sample. The related elemental distribution was analyzed with energy-dispersive X-ray spectroscopy (EDS, Oxford Ultim Max 65). The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained by using a Jem2100F. ¹H NMR spectra were recorded on a superconducting-magnet NMR spectrometer (Bruker AVANCE III HD 500 MHz). X-ray diffraction (XRD) patterns were recorded with a PANalytical Empyrean powder diffractometer using Cu K α radiation (λ = 0.1541 nm). X-ray photoelectron spectroscopy (XPS) spectra were conducted on an Thermo ESCALAB 250XI.

Determination of products

Nitrate: The obtained electrolyte was subjected to multiple dilutions. Then, 0.1 mL of HCl (1 M) and 0.01 mL of sulfamic acid solution (0.8 wt%) were introduced to the 5 mL of diluted electrolyte. After allowing it to stand for 10 min, the absorption spectrum was measured using UV-vis

spectrophotometry within the wavelength range of 300-200 nm. The calibration curve was established by employing a series of standard KNO₃ solutions.

Ammonia: To prepare Nessler's reagent, 0.7 g of KI and 1 g of HgI_2 were dispersed in 10 mL of 4 M NaOH solution and left in the dark for 24 h. Afterward, 5 mL of the diluted electrolyte, 0.1 mL of Nessler's reagent, and 0.1 mL of potassium sodium tartrate solution were mixed for 20 min. Finally, the absorption spectrum was obtained by UV-vis spectrophotometry. The calibration curve was generated by using a series of standard NH_4Cl solutions.

Isotope Labeling Experiments:

Isotope labeling experiments were carried out by using K¹⁵NO₃ (99%) as the feed nitrogen source to confirm the source and quantify the concentration of NH₃-N. The ¹⁵NH₄⁺ electrolyte was collected after electrolysis for 2 h in 1 M KOH containing 200 ppm K¹⁵NO₃-¹⁵N. The pH value of the postelectrolysis electrolyte was adjusted to 1-2 through 4 M H₂SO₄. Then, 50 μ L of deuterium oxide (D₂O) was mixed with 0.5 mL of the acidified electrolyte to obtain further ¹H NMR spectra by the NMR detection.

The conversion efficiency, yield rate and faradaic efficiency (FE) were calculated by using the following formula:

$Conversion = \Delta c_{NO_3^{\circ}} / c_0 \times 100\%$	(1)
$\text{Yield}_{\text{NH}_3} = (c_{NH_3} \times V) / (M_{NH_3} \times t \times S)$	(2)
$FE = (8F \times c \times V) / Q$	(3)

Where Δc_{NO3^-} is the concentration difference of NO₃⁻ before and after reduction, c_0 is the initial concentration of NO₃⁻, c_{NH3} is the measured NH₃ concentration, V is the electrolyte volume, *t* is the electrolysis time, M_{NH3} is the molar mass of NH₃, *S* is the geometric area of the catalyst, F is the Faraday constant (96 485 C mol⁻¹), and *Q* is the total charge during electrolysis.

Fig. S1. Synthetic Scheme of the Co-MOF/NF.

Fig. S2. SEM image of Co-MOF/NF.

Fig. S3. (a) SEM image of DMAB-Co-MOF/NF; (b) TEM image of DMAB-Co-MOF.

Fig. S4. XRD patterns of Co-MOF and DMAB-Co-MOF.

Fig. S5. (a) SEM image and (b) corresponding elemental mapping of DMAB-Co-MOF/NF.

Fig. S6. XRD pattern of DMAB-Co-MOF in 1 M KOH after electrolysis.

Fig. S7. B 1s XPS spectrum of CoOOH/Co(OH)₂.

Fig. S8. (a) SEM image and (b and c) corresponding elemental mapping of CoOOH/Co(OH)₂/NF.

Fig. S9. B 1s XPS spectrum of B-Co-S.

Fig. S10. (a) SEM image and (b, c and d) corresponding elemental mapping of B-Co-S/NF.

Fig. S11. Calibration curves used to estimate the concentrations of (a) NO₃⁻-N and (b) NH₃-N.

Fig. S12. (a) NH_3 yield rates and (b) NH_3 FE of CoOOH/Co(OH)₂/NF at different concentrations of NO_3 ⁻-N.

Fig. S13. LSV curves of B-Co-S/NF in different concentrations of Na₂S.

Fig. S14. CV curves of (a) CoOOH/Co(OH)₂/NF, (b) B-Co-S/NF, (c) DMAB-Co-MOF/NF and (d) Co-MOF/NF with various scan rates from 20 to 120 mV s⁻¹. (e) Plots of the current density versus the scan rate for CoOOH/Co(OH)₂/NF, B-Co-S/NF, DMAB-Co-MOF/NF and Co-MOF/NF with various scan rates from 20 to 120 mV s⁻¹ at 0.574 V *vs*. RHE.

Fig. S15. EIS spectra of various catalysts in (a) 1 M KOH with 200 ppm KNO₃-N at -0.23 V vs. RHE and (b) 1 M KOH with 4 M Na₂S at 0.27 V vs. RHE.

Fig. S16. SEM images of (a) CoOOH/Co(OH)₂/NF for NRA and (b) B-Co-S/NF for SOR after long-term stability testing.

Fig. S17. XRD patterns of (a) CoOOH/Co(OH)₂/NF for NRA and (b) B-Co-S/NF for SOR after long-term stability testing.

Electrocatalysts	Electrolytes	NH ₃ FE	NH ₃ yield rate	Ref.
CoOOH/Co(OH) ₂ /NF	1 M KOH+ 200 ppm KNO ₃ -N	94.16%	0.238 mmol h ⁻¹ cm ⁻² at -0.2 V vs. RHE	This work
Cu/Cu ₂ O	0.01 M KOH+0.5 M Na ₂ SO ₄ + 100 mM NO ₃ ⁻	$\begin{array}{c} 88.0 \pm \\ 1.6\% \end{array}$	$583.6 \pm 2.4 \ \mu mol \ cm^{-2} \ h^{-1}$ at $-1.0 \ V \ vs. \ RHE$	1
PdMoCu	1 M KOH + 0.1 M KNO ₃	56.95%	250.4 μmol h ⁻¹ cm ⁻² at -0.6 V vs. RHE	2
CoO@NCNT/GP	0.1 M NaOH + 0.1 M NaNO ₃	93.8±1.5 %	9041.6±370.7 mg h ⁻¹ cm ⁻² at -0.6 V vs. RHE	3
Pd10Cu/BCN	0.1 M KOH + 100 mM NO ₃ -	91.74%	102,153 μg h ⁻¹ mg _{cat} ⁻¹ at -0.6 V vs. RHE	4
CuCoSP	0.1 M KOH + 0.1 M NO ₃ -	93.3 ± 2.1%	1.17 mmol h ⁻¹ cm ⁻¹ at -0.175 V vs. RHE	5
In-S-G	1 M KOH + 0.1 M KNO ₃	75%	220 mmol h ⁻¹ g _{cat.} ⁻¹ at -0.5 V vs. RHE	6
Ag/ZnO	1 M KOH + 0.1 M KNO ₃	66%	516 mmol g _{cat} ⁻¹ h ⁻¹ at -0.6 V vs. RHE	7
Bi-X _{red}	1 M KOH + 0.5 M NO ₃ -	90.6%	46.5 g h ⁻¹ g _{cat} ⁻¹ at -0.8 V vs. RHE	8
Cu-N-C SAC	0.1 M KOH + 0.1 M KNO ₃	84.7%	4.5 mg cm ⁻² h ⁻¹ at -1 V vs. RHE	9
Cu ₂ O/Cu	1 M KOH + 250 mg L ⁻¹ NO ₃ ⁻	84.36%	2.17 mg cm ⁻² h ⁻¹ at -0.25 V vs. RHE	10

Table S1. The NRA performance comparison between the $CoOOH/Co(OH)_2/NF$ and some other reported electrocatalysts.

Table S2. The SOR performance comparison between the B-Co-S/NF and some other reported electrocatalysts.

Electrocatalysts	Electrolytes	Potential (V) at 100 mA cm ⁻²	Ref.	
B-Co-S/NF	1 M KOH+1 M Na ₂ S	0.380	This work	
	1 M KOH+4 M Na ₂ S	0.268		
CoS ₂ @C/MXene/NF	1 M NaOH+1 M Na ₂ S	0.389	11	
NiSe/NF	1 M NaOH+1 M Na ₂ S	0.490	12	
TPA@Ni ₃ S ₂ /NF	1 M NaOH+1 M Na ₂ S	0.480	13	
CuCoS/CC	1 M NaOH+4 M Na ₂ S	~0.320	14	
Cu ₂ S/NF	1 M NaOH+1 M Na ₂ S	0.440	15	
CoNi@NGs	1 M NaOH+1 M Na ₂ S	0.520	16	
Co-Ni ₃ S ₂	1 M NaOH+1 M Na ₂ S	0.590	17	
HEDP-Rh metallene	1 M KOH+4 M Na ₂ S	0.583	18	

References

- Y. Bu, C. Wang, W. Zhang, X. Yang, J. Ding and G. Gao, Angew. Chem., Int. Ed., 2023, 62, e202217337.
- X. Tong, Z. Zhang, Z. Fang, J. Guo, Y. Zheng, X. Liang, R. Liu, L. Zhang and W. Chen, J. Phys. Chem. C, 2023, 127, 5262-5270.
- 3. Q. Chen, J. Liang, L. Yue, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, T. Li, H. Guo and X. Sun, *Chem. Commun.*, 2022, **58**, 5901-5904.
- X. Zhao, X. Jia, H. Zhang, X. Zhou, X. Chen, H. Wang, X. Hu, J. Xu, Y. Zhou, H. Zhang and G. Hu, *J. Hazard. Mater.*, 2022, 434, 128909.
- 5. W. He, J. Zhang, S. Dieckhofer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira and W. Schuhmann, *Nat. Commun.*, 2022, **13**, 1129.
- F. Lei, W. Xu, J. Yu, K. Li, J. Xie, P. Hao, G. Cui and B. Tang, *Chem. Eng. J*, 2021, 426, 131317.
- 7. F. Lei, K. Li, M. Yang, J. Yu, M. Xu, Y. Zhang, J. Xie, P. Hao, G. Cui and B. Tang, *Inorg. Chem. Front.*, 2022, **9**, 2734-2740.
- N. Zhang, J. Shang, X. Deng, L. Cai, R. Long, Y. Xiong and Y. Chai, ACS Nano, 2022, 16, 4795-4804.
- J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J. F. Li, Z. Q. Tian, W. Liu, A. Wang and T. Zhang, J. Am. Chem. Soc., 2022, 144, 12062-12071.
- 10. W. Fu, Z. Hu, Y. Zheng, P. Su, Q. Zhang, Y. Jiao and M. Zhou, Chem. Eng. J, 2022, 433, 133680.
- 11. L. Zhang, Z. Wang and J. Qiu, Adv. Mater., 2022, 34, e2109321.
- 12. C. Duan, C. Tang, S. Yu, L. Li, J. Li and Y. Zhou, Appl. Catal. B: Environ., 2023, 324, 122255.
- 13. L. Jin, C. Chen, L. Hu, X. Liu, Y. Ding, J. He, H. Li, N. Li, D. Chen, Q. Xu and J. Lu, *Applied Surface Science*, 2022, **605**, 154756.
- 14. H. Yu, W. Wang, Q. Mao, K. Deng, Y. Xu, Z. Wang, X. Li, H. Wang and L. Wang, J. Mater. Chem. A, 2023, 11, 2218-2224.
- 15. Y. Pei, J. Cheng, H. Zhong, Z. Pi, Y. Zhao and F. Jin, Green Chem., 2021, 23, 6975-6983.
- 16. M. Zhang, J. Guan, Y. Tu, S. Chen, Y. Wang, S. Wang, L. Yu, C. Ma, D. Deng and X. Bao, *Energy Environ. Sci.*, 2020, 13, 119-126.
- 17. Y. Li, Y. Duan, K. Zhang and W. Yu, Chem. Eng. J, 2022, 433, 134472.
- 18. Z. Wang, G. Yang, P. Tian, X. Li, K. Deng, H. Yu, Y. Xu, H. Wang and L. Wang, *Chem. Eng. J*, 2023, 473, 145147.