Supplementary Information

Improvement of Li metal-electrolyte interfacial stability by *cis-trans* polar conformer formation in carbonate electrolyte

Min A Lee^{ab}, Han Jun Leem^a, Jeong Beom Lee^c, Chihyun Hwang^a, Jisang Yu^{a,†}, Hyun-seung Kim^{a,†}

^aAdvanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam 13509, Republic of Korea

^bDepartment of Energy Engineering, Hanyang University, Seoul, 04763 Republic of Korea

^cDepartment of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea

[†] Corresponding authors.

E-mail address:

jisang@keti.re.kr, hskim0113@keti.re.kr

Figure S1. Linear sweep voltammogram obtained from coin type Cu/Li cells with conventional and 2.0 *M* conformer electrolytes

Figure S2. (a) Initial polarization, (b) time versus voltage curves obtained from conformer forming (DMC) and less forming (DEC) electrolytes, (c) *ex-situ* SEM image of fifth cycled Li metal with DEC-based electrolyte

Figure S3. Cyclic voltammogram recorded from conventional and conformer electrolytes

Figure S4. F 1s XPS spectrum obtained from lithium electrode with (a) conformer and (b) background electrolyte

Figure S5. Cyclic voltammogram recorded from conventional and conformer electrolytes

Figure S6. O 1s XPS spectra obtained from 60 s-etched NCM811 electrodes

Figure S7. Optical image of fabricated lithium metal pouch cell

Published Year	Applied positive electrode	Evaluated Areal Capacity / mA h cm ⁻²	End-of-life cycle number
20181	NCA	2.50	300
20202	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	2.50	200
2020 ³	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	1.30	80
20214	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	2.50	200
20215	NCA	1.65	150
20216	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	2.62	200
20217	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	0.68	100
20218	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	0.50	200
20219	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	3.50	120
2022 ¹⁰	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	4.00	200
202211	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	4.3	120
This work	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	4.5	200

Table S1. Comparison with recently reported carbonate electrolytes for lithium metal batteries

References

- C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang and Q. Zhang, Angew. Chem. Int. Ed., 2018, 57, 14055-14059.
- W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu and Y. Lu, *Adv. Mater.*, 2020, **32**, 2001740.
- J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu, D. Xia, P. Bhaladhare, M. S. Gonzalez, T. A. Pascal, P. Liu and Z. Chen, ACS Energy Lett., 2020, 5, 1438-1447.
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu and C. Wang, *Angew. Chem. Int. Ed.*, 2021, **60**, 3661-3671.
- N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, J. Jiang, K. Xu, M. A. Schroeder, X. He and C. Wang, *ACS Energy Lett.*, 2021, 6, 1839-1848.
- K. Huang, S. Bi, B. Kurt, C. Xu, L. Wu, Z. Li, G. Feng and X. Zhang, *Angew. Chem. Int. Ed.*, 2021, **60**, 19232-19240.
- Q. Ma, J. Yue, M. Fan, S.-J. Tan, J. Zhang, W.-P. Wang, Y. Liu, Y.-F. Tian, Q. Xu, Y.-X. Yin, Y. You, A. Luo, S. Xin, X.-W. Wu and Y.-G. Guo, *Angew. Chem. Int. Ed.*, 2021, 60, 16554-16560.
- H. Wang, J. He, J. Liu, S. Qi, M. Wu, J. Wen, Y. Chen, Y. Feng and J. Ma, *Adv. Funct. Mater.*, 2021, **31**, 2002578.
- Z. Jiang, Z. Zeng, B. Zhai, X. Li, W. Hu, H. Zhang, S. Cheng and J. Xie, *J. Power Sources*, 2021, **506**, 230086.
- 10. Q. Zhao, N. W. Utomo, A. L. Kocen, S. Jin, Y. Deng, V. X. Zhu, S. Moganty, G. W.

Coates and L. A. Archer, Angew. Chem. Int. Ed., 2022, 61, e202116214.

11. Y. Zhang, Y. Wu, H. Li, J. Chen, D. Lei and C. Wang, *Nat. Commun.*, 2022, **13**, 1297.