Supporting information

Regulating Weak Solvation Structure in Electrolyte for High-Rate Li-Metal Batteries at Low Temperature

Hao Yu, Weihao Wang, Youquan Zhang, Yuejiao Chen, Libao Chen, Liangjun Zhou*,

Weifeng Wei

H Yu, W.H. Wang, Y.Q. Zhang, Prof. Y.J. Chen, Prof. L.B. Chen, Prof. L.J. Zhou, Prof.

W.F. Wei

State Key Laboratory of Powder Metallurgy, Central South University, Changsha,

Hunan 410083, China

*Corresponding author

E-mail: alexander-zhou@csu.edu.cn

No	Electrolyte formula	-20 °C	-40 °C	-60 °C (mS/cm)
1	1M LiPF ₆ EC/EMC/DEC/MA(1:1:1:1)	5.5	3.4	0.26
2	1M LiPF ₆ EC/EMC/TFENH(1:4:1)	3.2	0.53	
3	1M LiTFSI DOL/DME(8:2)	5.6	3.2	0.92
4	2M LiFSI/BFE	2.8	1.87	0.95
5	0.75 M LiPF ₆ EC/EMC/MTFA(1:4:2)	2.2	0.43	
6	1M LiPF ₆ MP/FEC(9:1)	6.3	4.1	2.1
7	0.7M LiPF ₆ +0.3M LiBF ₄ EC/DMC/EMC/BA	0.828	0.726	
8	1M LiPF ₆ MTFP/FEC(9:1)		3.2	1.68
This work	0.5M LiDFOB+0.5M LiBF ₄ IZ/EMC/FEC(5:2:3)	6.9	3.87	1.86

Table S1. Summary of the ionic conductivity at low temperature with different electrolytes

Table S2. Summary of the Li⁺ transference number with different electrolytes

No	Electrolyte formula	t _{Li+} (25°C)
9	LiFSA/SL/HFE(1:2.5:2)	0.38
10	0.9 M LiFSI+0.1MLiDFOB IZ/FEC(7:3)	0.53
11	1M LiTFSI MP/FEC(9:1)+HFE+LiDFOB	0.61
10	1 M LiTFSI in [EMIM][TFSI]	0.41
12	with 20 wt.% of PIL	
13	1M LiFSI-DTDL	0.75
This work	is work 0.5M LiDFOB+0.5M LiBF ₄ IZ/EMC/FEC(5:2:3)	

Figure S1. Ionic conductivities of LB111 electrolyte from 25 to -60 °C.

Figure S2. The photographs of different electrolytes at -60 °C.

Figure S3. t_{Li^+} of LB111 and Base electrolytes.

Figure S4. ESP of different solvents.

Figure S5. Snapshots of MD simulation for a) Base and b) Base-IZ.

Figure S6. Raman spectra of electrolytes with IZ.

Figure S7. The corresponding deposition/stripping curves in different electrolytes.

Figure S8. EIS measurements of Li∥Li symmetric cells at varies temperatures from −20 to 30 °C in LB111.

Figure S9. EIS measurements of Li||Li symmetric cells at varies temperatures from -20 to 30 °C in Base.

Figure S10. EIS measurements of Li||Li symmetric cells at varies temperatures from -20 to 30 °C in Base-IZ.

Figure S11. XPS spectrum of B 1s in Li metal anodes after 20 cycles with Base-IZ.

Figure S12. Discharge curves of NCM811 cell with a) 0.5M LiDFOB +0.5M LiBF₄ in IZ/EMC/FEC=3:5:2; and b) 1M LiPF₆ in IZ/EMC/FEC=5:2:3 under various temperatures.

Figure S13. Charge and discharge curves of NCM811 cells with a)1M LiBF4 in IZ/EMC/FEC=5:2:3; b) 1M LiDFOB in IZ/EMC/FEC=5:2:3; c) 0.5M LiDFOB +0.5M LiBF4 in IZ; d) 0.5M LiDFOB +0.5M LiBF4 in IZ/DME/FEC=5:2:3 under

Figure S14. a) Digital photograph and b) the charge/discharge curves at 0.1 C under various temperatures of the NCM811||Li pouch battery (3.2 Ah).

Figure S15. SEM images of the positive electrodes from cells with different electrolytes after cycling at -40 °C.

Reference

- M. C. Smart, B. V. Ratnakumar and S. Surampudi, Journal of the Electrochemical Society, 2002, 149, A361-A370.
- W. Lu, K. Xie, Z. X. Chen, S. Z. Xiong, Y. Pan and C. M. Zheng, Journal of Power Sources, 2015, 274, 676-684.
- 3. A. C. Thenuwara, P. P. Shetty and M. T. McDowell, Nano Letters, 2019, 19, 8664-8672.
- G. Zhang, J. Chang, L. Wang, J. Li, C. Wang, R. Wang, G. Shi, K. Yu, W. Huang, H. Zheng, T. Wu, Y. Deng and J. Lu, Nature communications, 2023, 14, 1081-1081.
- W. Lu, K. Xie, Y. Pan, Z. X. Chen and C. M. Zheng, Journal of Fluorine Chemistry, 2013, 156, 136-143.
- Y.-G. Cho, M. Li, J. Holoubek, W. Li, Y. Yin, Y. S. Meng and Z. Chen, ACS Energy Letters, 2021, 6, 2016-2023.
- W. Lv, C. Zhu, J. Chen, C. Ou, Q. Zhang and S. Zhong, Chemical Engineering Journal, 2021, 418.
- J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu, D. Xia, P. Bhaladhare, M. S. Gonzalez, T. A. Pascal, P. Liu and Z. Chen, ACS Energy Letters, 2020, 5, 1438-1447.
- 9. Y. Watanabe, Y. Ugata, K. Ueno, M. Watanabe and K. Dokko, Physical Chemistry Chemical Physics, 2023, 25, 3092-3099.
- 10. Y. Yin, T. Zheng, J. Chen, Y. Peng, Z. Fang, Y. Mo, C. Wang, Y. Wang, Y. Xia and X. Dong, Advanced Functional Materials, 2023, n/a, 2215151.
- 11.P. Lai, B. Huang, X. Deng, J. Li, H. Hua, P. Zhang and J. Zhao, Chemical Engineering Journal, 2023, 461, 141904.
- 12. M. Safa, A. Chamaani, N. Chawla and B. El-Zahab, Electrochimica Acta, 2016, 213, 587-593.
- 13. Y. Zhao, T. H. Zhou, T. Ashirov, M. El Kazzi, C. Cancellieri, L. P. H. Jeurgens, J. W. Choi and A. Coskun, Nature Communications, 2022, 13.