Electronic Supplementary Information

Development of MOF-5-like ultra-microporous metal-squarate frameworks for efficient acetylene storage and separation

Hai-Peng Li,^{a, b} Jia-Wen Wang,^a and Quan-Guo Zhai ^{a*}

^a Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry& Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.

^b Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, 756000, China.

*Corresponding author

Email: zhaiqg@snnu.edu.cn (Q.-G. Zhai)

MOF	SNNU-505-Co	SNNU-505-Zn
CCDC number	2269216	2269215
Empirical formula	$C_{12}H_4O_{16}Co_4$	$C_{12}F_4O_{12}Zn_4$
Formula weight	639.87	663.44
Crystal system	Cubic	Cubic
Space group	Fm-3m	Fm-3m
Temperature	153(2) K	293(2) K
Wavelength	1.54178 Å	0.71073 Å
<i>a</i> (Å)	19.00940(10)	19.2274(6)
<i>b</i> (Å)	19.00940(10)	19.2274(6)
<i>c</i> (Å)	19.00940(10)	19.2274(6)
α (deg)	90	90
β (deg)	90	90
γ (deg)	90	90
$V(Å^3)$	6869.19	7108.3
Ζ	8	8
$D_{\text{calcd}}(\text{Mg}\cdot\text{m}^{-3})$	1.237	1.241
Reflections/Unique	6622 / 372	3229 / 593
<i>R</i> (int)	0.0656	0.0515
Goodness-of-fit on F ²	1.161	1.204
$R_1^{a}, wR_2 [I > 2\delta (I)]$	0.0687, 0.2061	0.0719, 0.2216
R_1 , wR_2 (all data)	0.0751, 0.2164	0.0896, 0.2344
$\rho_{\rm fin}({ m max/min})~({ m e}\cdot{ m \AA}^{-3})$	1.40 and -2.07	0.88 and -1.386

Table S1 Crystal and structure refinement data for SNNU-505-M

 ${}^{a}R_{I} = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|, \ wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2}) 2 / \sum w(F_{o}^{2})^{2}]^{0.5}$

Zn-O	2.090(6)	Zn-F	2.166(4)
O ^{#1} -Zn-O ^{#2}	89.3(2)	O ^{#1} -Zn-F(1) ^{#3}	94.8(17)
O#2-Zn-F #3	174.3(3)	F ^{#4} -Zn-F	80.9
Zn ^{#4} -F-Zn	98.5(3)		

Table S2 Selected bond lengths [Å] and angles [°] for SNNU-505-Zn

Symmetry codes: #1 +z,1/2-x, 1/2-y; #2 1/2-y,1/2-z, +x; #3 +y,1/2-x, 1/2-z; #4 1/2-y, +x,1/2-z.

Table S3 Selected bond lengths [Å] and angles [°] for SNNU-505-Co

Co-O(1)	2.123(5)	Co-O(2)	2.071(5)
O(2)-Co-O(2) ^{#1}	87.04(16)	O(2)-Co-O(1) ^{#3}	95.08(17)
O(2) ^{#1} -Co-O(1) ^{#3}	177.1(3)	O(1) ^{#3} -Co-O(1) ^{#4}	82.7(3)
Co#3-O(1)-Co	96.8(3)		

Symmetry codes: #1 1-y,1-z, +x; #3 1/2-x, +y, 1/2-z; #4 1/2-x, 3/2-y, +z.

Figure S1. The three-dimensional crystal structures of SNNU-505-M.

(a) (b) Figure S2.The single crystal picture for SNNU-505-Zn (a) and SNNU-505-Co (b).

Figure S3.The EDS results for SNNU-505-Zn.

Figure S4. PXRD patterns for SNNU-505-M.

Figure S5. The TGA curve for SNNU-505-M based on before and after solvent exchange.

Estimation of the isosteric heats of gas adsorption. The isosteric enthalpy of adsorption ($-Q_{st}$) for C₂H₂, C₂H₄ and CO₂ can be calculated via using virial-type expression model based on the gas adsorption isotherms under 273 K and 298 K.^{S1}

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{m} b_i N^i \quad (1)$$
$$Qst = -R \sum_{i=0}^{m} a_i N^i \quad (2)$$

IAST calculation. Based on the pure gas uptake isotherms of SNNU-505-M, the selectivity values of equimolar mixed C_2H_2/C_2H_4 and C_2H_2/CO_2 were simulated using the ideal adsorbed solution theory (IAST),^{S2} and found that the single-site langmuir-freundlich (LF) equation was the most suitable for the experimental pure isotherms of CO_2 , C_2H_2 and C_2H_4 .

$$q = q_{m1} * \frac{b_1 * p^{1/n_1}}{1 + b_1 * p^{1/n_1}}$$
(3)

The adsorption selectivity was defined as:

$$s_{A/B} = \frac{x_A / y_A}{x_B / y_B} \quad (4)$$

Figure S6. The adsorption and desorption isotherms for SNNU-505-M, (a) N_2 at 77 K for SNNU-505-Zn; and the C_2H_2 (b), C_2H_4 (c), CO_2 (d) adsorption isotherms for SNNU-505-M.

Figure S7. Fitted gas adsorption isotherms of SNNU-505-Co measured at 273 K and 298 K.

Figure S8. Fitted gas adsorption isotherms of SNNU-505-Ni measured at 273K and 298K.

Figure S9. Fitted gas adsorption isotherms of SNNU-505-Zn measured at 273K and 298K.

Figure S10. The isosteric heat of adsorption $(-Q_{st})$ of C_2H_2 , C_2H_4 , and CO_2 for SNNU-505-M.

Figure S11. Comparison of experimental isotherms and simulated isotherms (Left Y axis), and mixture adsorption selectivity predicted by IAST (Right Y axis) of SNNU-505-Co for equimolar binary-mixture: (a) C_2H_2/C_2H_4 at 273 K; (b) C_2H_2/CO_2 at 273 K; (c) C_2H_2/C_2H_4 at 298 K; (d) C_2H_2/CO_2 at 298 K.

Figure S12. Comparison of experimental isotherms and simulated isotherms (Left Y axis), and mixture adsorption selectivity predicted by IAST (Right Y axis) of SNNU-505-Ni for equimolar binary-mixture: (a) C_2H_2/C_2H_4 at 273 K; (b) C_2H_2/CO_2 at 273 K; (c) C_2H_2/C_2H_4 at 298 K; (d) C_2H_2/CO_2 at 298 K.

Figure S13. Comparison of experimental isotherms and simulated isotherms (Left Y axis), and mixture adsorption selectivity predicted by IAST (Right Y axis) of SNNU-505-Zn for equimolar binary-mixture: (a) C_2H_2/C_2H_4 at 273 K; (b) C_2H_2/CO_2 at 273 K; (c) C_2H_2/C_2H_4 at 298 K, (d) C_2H_2/CO_2 at 298 K.

Figure S14. The selectivity of C_2H_2/C_2H_4 and C_2H_2/CO_2 predicted by IAST for SNNU-505-M. (ab) at 273 K; (c-d) at 298 K.

Figure S15.Schematic illustration of the apparatus for the breakthrough experiments.

Figure S16. The C_2H_2/C_2H_4 breakthrough curve for SNNU-505-Zn at different temperatures and the total flow of 1 mL/min.

Figure S17. The breakthrough curves of C_2H_2/C_2H_4 gas mixtures for SNNU-505-Zn. (a) and (b) the breakthrough curve collected under different temperature and the total flow of 2 mL/min; (c) the breakthrough curve at 298 K and the total flow of 3 mL/min.

Figure S18. The C_2H_2/C_2H_4 cycle breakthrough experiment for SNNU-505-Zn.

Figure S19. The breakthrough curves of C_2H_2/C_2H_4 (1:99) gas mixtures for SNNU-505-Zn.

Figure S20. The C_2H_2/CO_2 (50:50) breakthrough curves for SNNU-505-Zn at 273 K.

Figure S21. The breakthrough curves for SNNU-505-Co at 273 K and the total flow of 2 mL/min. (a) the $C_2H_2/C_2H_4(50:50)$ breakthrough curve; (b) the $C_2H_2/CO_2(50:50)$ breakthrough curve.

Figure S22. C_2H_2 , C_2H_4 and CO_2 binding sites in SNNU-505-Zn absorbents determined by GCMC simulation.

Reference

[S1] Rowsell, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 1304-1315.

[S2] Myers, A. L.; Prausnitz, J. M. Thermodynamics of Mixed-Gas Adsorption. *AIChE J.* 1965, 11, 121-127.

[S3] Rappe, A. K.; Goddard, W. A. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem., 1991, 95, 3358-3363.