Supporting Information

Ultrafine Co₃O₄ Nanoparticles-Engineered Binary Metal Nitride Nanorods with

Interfacial Charge Redistribution for Enhanced Water Splitting

Dinh Chuong Nguyen^a, Thi Luu Luyen Doan^b, Xinfeng Zhu^a,

Nam Hoon Kim^a*, Joong Hee Lee^{a,c}*

^aDepartment of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk,

54896, Republic of Korea.

^bDivision of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea.

°Carbon Composite Research Center, Department of Polymer-Nano Science and Technology,

Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

*Corresponding author: Tel.: +82 63 270 2301; Fax: +82 63 270 2341.

E-mail address: nhk@jbnu.ac.kr (Prof. Nam Hoon Kim)

jhl@jbnu.ac.kr (Prof. Joong Hee Lee).

Synthesis of Co-Zn-(OH-CO₃)

Co-Zn-(OH-CO₃) nanorod arrays were grown on the surface of NF substrate by a hydrothermal method. Typically, the pre-treated NF was dipped in 50 mL solution containing $0.08 \text{ M Co}(\text{NO}_3)_2.6\text{H}_2\text{O}$, $0.04 \text{ M Zn}(\text{NO}_3)_2.6\text{H}_2\text{O}$, 0.16 M urea, and $0.13 \text{ M NH}_4\text{F}$ in 100 mL of Teflon-lined stainless-steel autoclave, followed by sealing and heating at 95 °C with heating rate of 2 °C min⁻¹ for 12 h. After the hydrothermal reaction was finished, the Co-Zn-(OH-CO₃) sample was rinsed with ethanol and DI water 3 times each, and dried at 60 °C for 1 day in air.

Synthesis of Co-Zn oxide sample

The precursor Co-Zn-(OH-CO₃) was annealed in air at 500 °C for 3 h to convert into Co-Zn oxide sample, as one of the counterparts of the Co₃O₄ NPs/Co-Zn nitride.

Synthesis of Pt/C- and RuO₂-based electrodes

Catalyst ink was prepared by dissolving 2.1 mg of Pt/C or RuO₂ in the mixed solution of 100 μ L of DI water, 400 μ L of ethanol, 30 μ L of Nafion with the association of sonication for 0.5 h. Next, the as-fabricated catalyst ink was coated on nickel foam (1 cm × 1 cm) and then dried at 60 °C for 24 h.

Figure S1. SEM images of nickel foam at different magnifications.

Figure S2. SEM images of Co-Zn-(OH-CO₃) at different magnifications.

Figure S3. XRD pattern of Co-Zn-(OH-CO₃).

Figure S4. SEM images of Co-Zn nitride at different magnifications.

Figure S5. XRD pattern of Co-Zn nitride.

Figure S6. (a) TEM image, (b) and (c) HR-TEM images (the inset of (c) is d(220) crystalline plane of a Co_3O_4 nanocrystal on the Co_3O_4 NPs/Co-Zn nitride (below) and scanning TEM of Co_3O_4 NPs/Co-Zn nitride (up)), and (d) EDS mapping images of the Co_3O_4 NPs/Co-Zn nitride.

Figure S7. EDS spectra of (a) nickel foam, (b) Co-Zn-(OH-CO₃), (c) Co-Zn nitride, and (d)

Co₃O₄ NPs/Co-Zn nitride.

Figure S8. Pore size distribution of the Co₃O₄ NPs/Co-Zn nitride.

Figure S9. Multi-step chronoamperometric curve of the Co₃O₄ NPs/Co-Zn nitride under HER

conditions.

Figure S10. (a) LSV curves and (b) overpotentials at 10 and 50 mA cm⁻² of the Co_3O_4 NPs/Co-

Zn nitride determined before and after HER stability testing.

Figure S11. (a) and (b) SEM images, (c) TEM image, (d)-(g) EDS mapping images of the post-

HER Co₃O₄ NPs/Co-Zn nitride.

Figure S12. Multi-step chronoamperometric curve of the Co₃O₄ NPs/Co-Zn nitride under OER

conditions.

Figure S13. (a) LSV curves and (b) overpotentials at 10 and 50 mA cm⁻² of the Co_3O_4 NPs/Co-

Zn nitride determined before and after OER stability testing.

Figure S14. (a) and (b) SEM images, (c) TEM image, (d)-(g) EDS mapping images of the post-

OER Co₃O₄ NPs/Co-Zn nitride.

Figure S15. (a) and (b) Magnified TEM images, and (c) and (d) HR-TEM images of the post-

OER Co₃O₄ NPs/Co-Zn nitride.

Figure S16. (a) and (b) The photographs of the Raman spectroscopy system. The photographs of Co_3O_4 NPs/Co-Zn nitride sample during *in situ* Raman analysis under (c) HER conditions and (d) OER conditions.

Figure S17. Cell voltages at 10 and 50 mA cm⁻² of the Co_3O_4 NPs/Co-Zn nitride (-, +) determined before and after stability testing under overall water-splitting.

Figure S18. CV curves at different scan rates of (a) the Co_3O_4 NPs/Co-Zn nitride, (b) Co-Zn

nitride, (c) Co-Zn oxide, and (d) Co-Zn-(OH-CO₃).

Table S1. The Co percentage in the Co-Zn nitride and Co_3O_4 NPs/Co-Zn nitride samples by

XPS analysis

Samples	Co percentage (at %)	
Co-Zn nitride	23.43	
Co ₃ O ₄ NPs/Co-Zn nitride	37.51	
Co percentage of Co_3O_4 NPs: 14.08 at %		

Table S2. HER overpotential of the Co₃O₄ NPs/Co-Zn nitride at current density of 10 mA cm⁻

Catalysts	Overpotential	References
	(10 mA cm ⁻²)	
NiCoP/CNF	130	Adv. Energy Mater. 2018, 8, 20,
		1800555.
Ni/Mo ₂ C- NCNFs	143.0	Adv. Energy Mater. 2019, 9, 1803185
CoP/TiO _x	337	Small, 2020, 16, 2, 1905075.
MoP/NPG	126	Appl. Catal., B: Environ, 2020, 260,
		118196.
1D-DRHA MoS ₂	119.0	Appl. Catal. B, 2019, 258, 117964
FeCo/Co ₂ P@NPCF	260	Adv. Energy Mater. 2020, 10, 10,
		1903854
MoS ₂ –Ni ₃ S ₂ HNRs/NF	98.0	ACS Catal. 2017, 7, 4, 2357–2366
Co-P/FTO	254	Angew. Chem. Int. Ed. 2020,59, 39,
		17172-17176.
MoS _x @NiO	406.0	Adv. Funct. Mater. 2019, 29,
		1807562
CoP@FeCoP/NC YSMPs	141	Chem. Eng. J. 2021, 403, 126312.
SrRuO ₃ /CNT	109.0	ACS Appl. Energy Mater. 2019, 2,
		956–960
Co ₃ O ₄ NPs/Co-Zn nitride	80.5	This work

² compared to those of other noble-metal-free HER electrocatalysts.

Overpotential Catalysts References at 10 mA cm⁻² Adv. Energy Mater. 2020, 10, 8, $CoS_x@Cu_2MoS_4-MoS_2/NSG$ 351.4 1903289. Adv. Funct. Mater, 2020, 32, 36, Co₂P/CoNPC 328 2003649. _ _ _ _ _ _ Angew. Chem. Int. Ed. 2020, 59, 1, $Co_{1.5}Fe_{0.5}P$ 278 465-470. Adv. Funct. Mater. 2019, 29, MoS_x@NiO 406.0 1807562 Angew. Chem. Int. Ed., 2021, 133, D-CoP-HoMSs 294 13, 7002-7007 ACS Appl. Mater. Interfaces. 2019, CoP (MoP)-CoMoO₃/CN 296 11, 7, 6890-6899. Angew. Chem. Int. Ed., 2021, 133, 294 D-CoP-HoMSs 13, 7002-7007 Adv. Funct. Mater, 2020, 30, 7, 310 O-CoP-2 1905252. Ni-CoP 290 Nano Lett. 2021, 21, 1, 823-832 Chem. Eng. J. 2021, 405, 126580. Mn-Co-P YS 330 Co₃O₄ NPs/Co-Zn nitride 271.7 This work

Table S3. OER overpotential of Co₃O₄ NPs/Co-Zn nitride at current density of 10 mA cm⁻²

compared to those of other noble-metal-free OER electrocatalysts.