Supplementary Information

Cobalt Modification of Nickel-Iron Hydroxide Electrocatalysts: A Pathway to Enhanced Oxygen Evolution Reaction

Joshua Zheyan Soo,^{1,*} Asim Riaz,^{2,*} Felipe Kremer,³ Frank Brink,³ Chennupati Jagadish,^{1,4}

Hark Hoe Tan,^{1,4} Siva Karuturi²

¹ Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, 2601 Acton, Australian Capital Territory, Australia

² School of Engineering, The Australian National University, 2601 Acton, Australian Capital Territory, Australia

³Centre for Advanced Microscopy, The Australian National University, 2601 Acton, Australian Capital Territory, Australia

⁴ ARC Centre of Excellence for Transformative Meta-Optical Systems, The Australian National University, 2601 Acton, Australian Capital Territory, Australia

*Corresponding e-mail: joshua.soo@anu.edu.au; asim.riaz@anu.edu.au

Figure S1: Reverse-scanned LSVs of NiFeCo hydroxide synthesized using 15 mM Co chloride concentration at different corrosion times.

Figure S2: XRD plots of NiFeCo/NF and NF.

Figure S3: Grayscale of HAADF image of NiFeCo/Si with labelled regions.

Ni 2p		Fe 2p			
Peak	Energy	Assignment	Peak	Energy (eV)	Assignment
	(eV)				
1	852.8	Ni ⁰ 2p _{3/2}	1	710.6	$Fe^{3+} 2p_{3/2}$
2	855.6	$Ni^{2+}2p_{3/2}$	2	712.5	$Fe^{3+}2p_{3/2,}$
					(multiplet)
3	857.2	Ni ³⁺ 2p _{3/2}			
4	861.1	$Ni^{2+}2p_{3/2}$, sat			
5	863.7	Ni ³⁺ 2p _{3/2} , sat			

Table S1: Peak assignments of NiFeCo/NF XPS Spectra from Figure 2(d-g).

Co 2p			O 1s		
Peak	Energy	Assignment	Peak	Energy (eV)	Assignment
	(eV)				
1	781.0	$Co^{2+} 2p_{3/2}$	1	529.9	M-O bonds
2	782.4	$Co^{3+} 2p_{3/2}$	2	531.6	M-OH bonds
3	786.8	$Co^{2+} 2p_{3/2}$, sat	3	532.9	Adsorbates
4	789.8	$Co^{3+} 2p_{3/2}$			

Table S2: Comparison of NiFeCo/NF with other NiFeCo electrocatalysts and Ni-based electrocatalysts synthesized using solution corrosion method.

Sample	Synthesis Method	OER overpotential at	Ref

		10 mA/cm ² (mV)		
NiFeCo/NF	Solution corrosion	195	Own work	
NiFeCo/Iron foil	Hydrothermal	300	1	
NiFeCo/NF	CV electrodeposition	207	2	
NiFeCo/Ti felt	Co-precipitation	249	3	
NiFeOOH/NiFeS _x /NiFe	Solution corrosion	227	4	
foam				
NiFe LDH/NF	Solution corrosion	180	5	
NiFe LDH/NF	Solution corrosion	269	6	

Figure S4: (a) Ni 2p, (b) Fe 3p, and (c) O 1s XPS spectra of NiFe/Si and NiFeCo/Si

Figure S5: LSVs of NiFeCo/NF synthesized using 1 or 2-step processes.

Table S3: Randles cell equivalent circuit values of NiFe/Si and NiFeCo/Si

Sample	Rs	Rct	CPE (Y ₀)	CPE (N)
NiFe/Si	0.965	0.590	0.028	0.651
NiFeCo/Si	0.812	0.269	0.092	0.789

Figure S6: CV of (a) NiFe/NF and (b) NiFeCo/NF with labelled Ni²⁺-Ni³⁺ redox couple.

Figure S7: CV graphs at various scan rates (3 - 15 mV/s) and corresponding linear fitted plots of the maximum difference of anodic and cathodic sweep current densities vs scan rate for: (a-b) NiFe/NF and (c-d) NiFeCo/NF.

Figure S8: LSVs of NiFeCo/NF before and after chronopotentiometry (stability).

Figure S9: EDX of NiFeCo/NF surface after chronopotentiometric measurements.

Figure S10: XRD plots of NiFeCo/NF before and after chronopotentiometry (stability) measurements.

Figure S11: SEM images of NiFeCo synthesized using (a-c): Co chloride precursor and (d-f) Co nitrate precursor at different synthesis times.

Figure S12: SEM images of NiFeCo/NF synthesized with (a-b) Co chloride precursor and (c-d) Co nitrate precursor; synthesized at 15 mM and 500 mM precursor concentrations, respectively.

Figure S13: LSVs of NiFeCo/NF synthesized using different Co precursors at 15 mM concentration.

Figure S14: XRD plots of NiFeCo/NF synthesized using Co chloride and Co nitrate precursors at 15 mM precursor concentration.

Figure S15: XRD plots of Co-chloride synthesized NiFeCo/NF at different precursor concentrations.

Figure S16: SAED patterns of Co –chloride synthesized NiFeCo/Si synthesized at (a) 15 mM and (b) 1 M precursor concentrations.

Co chloride concentration (mM)	Solution pH
15	7.0
50	7.0
100	6.7
500	6.2
1000	5.7

Table S4: pH values of Co chloride solution at different concentrations.

Figure S17: Reverse-scanned LSV of Co-chloride synthesized NiFeCo/NF at different Co chloride concentrations.

Table S5: Estimated R_{ct} values of Co-chloride synthesized NiFeCo/NF obtained from Nyquist plots in Figure 4(d).

Precursor Concentration (mM)	R _{ct} of NiFeCo/NF (Ω)
15	1.010
50	0.677
100	0.570
500	0.520
1000 (1 M)	0.676

References:

- 1. M. L. Lindstrom, R. Gakhar, K. Raja and D. Chidambaram, *Journal of The Electrochemical Society*, 2020, **167**, 046507.
- 2. H. Y. Jung, J. H. Park, J. C. Ro and S. J. Suh, ACS Omega, 2022, **7**, 45636-45641.
- 3. Y. S. Park, J.-Y. Jeong, M. J. Jang, C.-Y. Kwon, G. H. Kim, J. Jeong, J.-h. Lee, J. Lee and S. M. Choi, *Journal of Energy Chemistry*, 2022, **75**, 127-134.
- 4. M. Chen, W. Li, Y. Lu, P. Qi, H. Wu, G. Liu, Y. Zhao and Y. Tang, *Journal of Materials Chemistry A*, 2023, **11**, 4608-4618.
- 5. Y.-F. Song, Z.-Y. Zhang, H. Tian, L. Bian, Y. Bai and Z.-L. Wang, *Chemistry A European Journal*, 2023, **29**, e202301124.
- 6. Y. Liu, X. Liang, L. Gu, Y. Zhang, G.-D. Li, X. Zou and J.-S. Chen, *Nature Communications*, 2018, **9**, 2609.